首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landscape features shape patterns of gene flow among populations, ultimately determining where taxa lay along the continuum between panmixia to complete reproductive isolation. Gene flow can be restricted, leading to population differentiation in two non-exclusive ways: “physical isolation”, in which geographic distance in combination with the landscape features restricts movement of individuals promoting genetic drift, and “ecological isolation”, in which adaptive mechanisms constrain gene flow between different environments via divergent natural selection. In central Iberia, two fire salamander subspecies occur in parapatry across elevation gradients along the Iberian Central System mountains, while in the adjacent Montes de Toledo Region only one of them occurs. By integrating population and landscape genetic analyses, we show a ubiquitous role of physical isolation between and within mountain ranges, with unsuitable landscapes increasing differentiation between populations. However, across the Iberian Central System, we found strong support for a significant contribution of ecological isolation, with low genetic differentiation in environmentally homogeneous areas, but high differentiation across sharp transitions in precipitation seasonality. These patterns are consistent with a significant contribution of ecological isolation in restricting gene flow among subspecies. Overall, our results suggest that ecological divergence contributes to reduce genetic admixture, creating an opportunity for lineages to follow distinct evolutionary trajectories.Subject terms: Evolutionary ecology, Speciation  相似文献   

2.
Previously, we observed that without using prior information about individual sampling locations, a clustering algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we systematically examine the influence of several study design variables—sample size, number of loci, number of clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the sample—on the “clusteredness” of individuals. With all other variables held constant, geographic dispersion is seen to have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.  相似文献   

3.
Reintroductions and translocations are increasingly used to repatriate or increase probabilities of persistence for animal and plant species. Genetic and demographic characteristics of founding individuals and suitability of habitat at release sites are commonly believed to affect the success of these conservation programs. Genetic divergence among multiple source populations of American martens (Martes americana) and well documented introduction histories permitted analyses of post‐introduction dispersion from release sites and development of genetic clusters in the Upper Peninsula (UP) of Michigan <50 years following release. Location and size of spatial genetic clusters and measures of individual‐based autocorrelation were inferred using 11 microsatellite loci. We identified three genetic clusters in geographic proximity to original release locations. Estimated distances of effective gene flow based on spatial autocorrelation varied greatly among genetic clusters (30–90 km). Spatial contiguity of genetic clusters has been largely maintained with evidence for admixture primarily in localized regions, suggesting recent contact or locally retarded rates of gene flow. Data provide guidance for future studies of the effects of permeabilities of different land‐cover and land‐use features to dispersal and of other biotic and environmental factors that may contribute to the colonization process and development of spatial genetic associations.  相似文献   

4.
Mitochondrial and autosomal short tandem-repeat (STR) genetic distances among 28 Pacific Island and Asian populations are significantly correlated (r=.25, P<.01) but describe distinct patterns of relationships. Maternally inherited-mtDNA data suggest that Remote Oceanic Islanders originated in island Southeast Asia. In contrast, biparental STR data reveal substantial genetic affinities between Remote Oceanic Islanders and Near Oceanic populations from highland Papua New Guinea and Australia. The low correlation between maternal and biparental genetic markers from the same individuals may reflect differences in genome-effective population sizes or in sex-biased gene flow. To explore these possibilities, we have examined genetic diversity, gene flow, and correlations among genetic, linguistic, and geographic distances within four sets of populations representing potential geographic and cultural spheres of interaction. GST estimates (a measure of genetic differentiation inversely proportional to gene flow) from mtDNA sequences vary between 0.13 and 0.39 and are typically five times greater than GST estimates from STR loci (0.05-0.08). Significant correlations (r>.5, P<.05) between maternal genetic and linguistic distances are coincident with high mtDNA GST estimates (>0.38). Thus, genetic and linguistic distances may coevolve, and their correspondence may be preserved under conditions of genetic isolation. A significant correlation (r=.65, P<.01) between biparental genetic and geographic distances is coincident with a low STR GST estimate (0.05), indicating that isolation by distance is observed under conditions of high nuclear-gene flow. These results are consistent with an initial settlement of Remote Oceania from island Southeast Asia and with extensive postcolonization male-biased gene flow with Near Oceania.  相似文献   

5.
Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we present multilocus analyses of 26 single nucleotide polymorphisms (SNPs) within 10 nuclear genes to estimate population differentiation and admixture based on the characterization of 774 individuals representing North Atlantic, South Atlantic, and Mediterranean swordfish populations. Pairwise F ST values, AMOVA, PCoA, and Bayesian individual assignments support the differentiation of swordfish inhabiting these three basins, but not the current placement of the boundaries that separate them. Specifically, the range of the South Atlantic population extends beyond 5°N management boundary to 20°N-25°N from 45°W. Likewise the Mediterranean population extends beyond the current management boundary at the Strait of Gibraltar to approximately 10°W. Further, admixture zones, characterized by asymmetric contributions of adjacent populations within samples, are confined to the Northeast Atlantic. While South Atlantic and Mediterranean migrants were identified within these Northeast Atlantic admixture zones no North Atlantic migrants were identified respectively in these two neighboring basins. Owing to both, the characterization of larger number of loci and a more ample spatial sampling coverage, it was possible to provide a finer resolution of the boundaries separating Atlantic swordfish populations than previous studies. Finally, the patterns of population structure and admixture are discussed in the light of the reproductive biology, the known patterns of dispersal, and oceanographic features that may act as barriers to gene flow to Atlantic swordfish.  相似文献   

6.
The study of genetic information can reveal a reconstruction of human population’s history. We sequenced the entire mtDNA control region (positions 16.024 to 576 following Cambridge Reference Sequence, CRS) of 605 individuals from seven Mesoamerican indigenous groups and one Aridoamerican from the Greater Southwest previously defined, all of them in present Mexico. Samples were collected directly from the indigenous populations, the application of an individual survey made it possible to remove related or with other origins samples. Diversity indices and demographic estimates were calculated. Also AMOVAs were calculated according to different criteria. An MDS plot, based on FST distances, was also built. We carried out the construction of individual networks for the four Amerindian haplogroups detected. Finally, barrier software was applied to detect genetic boundaries among populations. The results suggest: a common origin of the indigenous groups; a small degree of European admixture; and inter-ethnic gene flow. The process of Mesoamerica’s human settlement took place quickly influenced by the region’s orography, which development of genetic and cultural differences facilitated. We find the existence of genetic structure is related to the region’s geography, rather than to cultural parameters, such as language. The human population gradually became fragmented, though they remained relatively isolated, and differentiated due to small population sizes and different survival strategies. Genetic differences were detected between Aridoamerica and Mesoamerica, which can be subdivided into “East”, “Center”, “West” and “Southeast”. The fragmentation process occurred mainly during the Mesoamerican Pre-Classic period, with the Otomí being one of the oldest groups. With an increased number of populations studied adding previously published data, there is no change in the conclusions, although significant genetic heterogeneity can be detected in Pima and Huichol groups. This result may be explained because populations historically assigned as belonging to the same group were, in fact, different indigenous populations.  相似文献   

7.
The most rapidly expanding habitat globally is the urban habitat, yet the origin and life histories of the populations of native species that inhabit this habitat remain poorly understood. We use DNA barcoding of the COI gene in the widespread native pest ant Tapinoma sessile to test two hypotheses regarding the origin of urban populations and traits associated with their success. First, we determine if urban samples of T. sessile have a single origin from natural populations by looking at patterns of haplotype clustering from across their range. Second, we examine whether polygynous colony structure – a trait associated with invasion success – is correlated with urban environments, by studying the lineage dependence of colony structure. Our phylogenetic analysis of 49 samples identified four well supported geographic clades. Within clades, Kimura-2 parameter pairwise genetic distances revealed <2.3% variation; however, between clade genetic distances were 7.5–10.0%, suggesting the possibility of the presence of cryptic species. Our results indicate that T. sessile has successfully colonized urban environments multiple times. Additionally, polygynous colony structure is a highly plastic trait across habitat, clade, and haplotype. In short, T. sessile has colonized urban habitats repeatedly and appears to do so using life history strategies already present in more natural populations. Whether similar results hold for other species found in urban habitats has scarcely begun to be considered.  相似文献   

8.
Aim The aim of this study was to understand the roles of landscape features in shaping patterns of contemporary and historical genetic diversification among populations of the Andean tree frog (Hypsiboas andinus) across spatial scales. Location Andes mountains, north‐western Argentina, South America. Methods Mitochondrial DNA control region sequences were utilized to assess genetic differentiation among populations and calculate population pair‐wise genetic distances. Three models of movement, namely traditional straight‐line distance and two effective distances based on habitat classification, were examined to determine which of these explained the most variation in pair‐wise population genetic differentiation. The two habitat classifications were based on digital vegetation and hydrology layers that were generated from a 90‐m resolution digital elevation model (DEM) and known relationships between elevation and habitat. Mantel tests were conducted to test for correlations between geographic and genetic distance matrices and to estimate the percentage variation explained by each type of geographic distance. To investigate the location of possible barriers to gene flow, we used Monmonier’s maximum difference algorithm as implemented in barrier 2.2. Results At both geographic scales, effective distances explained more variation in genetic differentiation than did straight‐line distance. The least‐cost distances based on the simple classification performed better than the more detailed habitat classification. We controlled for the effects of historical range fragmentation determined from previous nested clade analyses, and therefore evaluated the effect of different distances on the genetic variation attributable to more recent factors. Effective distances identified populations that were highly divergent as a result of isolation in unsuitable habitats. The proposed locations of barriers to gene flow identified using Monmonier’s maximum difference algorithm corresponded well with earlier analyses and supported findings from our partial Mantel tests. Main conclusions Our results indicate that landscape features have been important in both historical and contemporary genetic structuring of populations of H. andinus at both large and small spatial scales. A landscape genetic perspective offers novel insights not provided by traditional phylogeographic studies: (1) effective distances can better explain patterns of differentiation in populations, especially in heterogeneous landscapes where barriers to dispersal may be common; and (2) least‐cost path analysis can help to identify corridors of movement between populations that are biologically more realistic.  相似文献   

9.
Eight German populations of the land snail Balea biplicata(Mollusca: Clausiliidae) were studied using the randomly amplified polymorphic DNA-polymerase chain reaction and morphometrics (principal component and discriminant analysis) to examine population structure and gene flow patterns in a fragmented landscape mosaic along the Elster/Saale riparian system, Germany. A variety of population genetic analyses targeting either more on the geographic scale of gene flow (genetic distances, F statistics, Mantel test) or on local genotypic structure (heterozygosity, linkage disequilibrium, bottleneck probability) showed that (1) the population system in total is governed by high gene flow independent of geographic distance, (2) genetic structure on the narrower sampling scale is mainly determined by stochastic processes due to genetic drift in small isolated and frequently recolonized populations, and (3) the morphometrical variation of the populations was related neither to habitat nor to genetic heterogeneity. The potentials for active and passive dispersal capacity of the snails and possible environmental impacts on their population structure are discussed.  相似文献   

10.
E. Llop  Z. Harb  R. Moreno  F. Rothhammer 《HOMO》2002,53(2):170-177
Gene frequencies for nine genetic marker systems are presented for the following Chilean coastal populations: Paposo, Carelmapu, Laitec and Ukika. Historical and anthropological data suggest the presence of descendants of the Amerindian populations, specifically of Changos, Cuncos, Chonos and Yamanas in these populations. Results indicate that the studied groups maintain an important aboriginal genetic composition. According to Amerindian admixture estimates, the genetic isolation of coastal populations is lower than that of inland populations, suggesting that proximity to the sea facilitated gene flow. Genetic distances and dendrograms were obtained for these populations and another four Chilean Indian populations. Results agree with expectations, taking geographic isolation and non-aboriginal admixture into account.  相似文献   

11.
Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species.  相似文献   

12.
Genetic diversity within and among populations and species is influenced by complex demographic and evolutionary processes. Despite extensive research, there is no consensus regarding how landscape structure, spatial distribution, gene flow, and population dynamics impact genetic composition of natural populations. Here, we used amplified fragment length polymorphisms (AFLPs) to investigate effects of population size, geographic isolation, immigration, and gene flow on genetic structure, divergence, and diversity in populations of Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae) from 20 sampling locations in southern Sweden. Analyses of 1564 AFLP markers revealed low to moderate levels of genetic diversity (PPL = 59.5–90.1; Hj = 0.23–0.32) within and significant divergence among sampling localities. This suggests that evolution of functional traits in response to divergent selection is possible and that gene flow is restricted. Genetic diversity increased with population size and with increasing proportion of long‐winged phenotypes (a proxy of recent immigration) across populations on the island of Öland, but not on the mainland. Our data further suggested that the open water separating Öland from the mainland acts as a dispersal barrier that restricts migration and leads to genetic divergence among regions. Isolation by distance was evident for short interpopulation distances on the mainland, but gradually disappeared as populations separated by longer distances were included. Results illustrate that integrating ecological and molecular data is key to identifying drivers of population genetic structure in natural populations. Our findings also underscore the importance of landscape structure and spatial sampling scheme for conclusions regarding the role of gene flow and isolation by distance.  相似文献   

13.
The RAPD method was used to assess the genetic differentiation of brown hare (Lepus europaeus) populations from Central Greece. Greek wild populations were compared with samples from Austria, Poland, Germany, France, and Bulgaria, as well as with reared/released hares to investigate the impact of the releases on the native populations' genetic structure. The absence of diagnostic bands distinguishing between L. europaeus populations confirmed the high level of gene flow between brown hare populations over long geographic distances reported by other authors. Phylogenetic trees, derived from genetic distances estimated by RAPD band frequencies, suggested one major partitioning event of nuclear DNA lineages found in the samples. The reared individuals clustered with the Austrian, Polish, German, and French populations, whereas the Greek populations clustered apart with the Bulgarian population. Within Greece the distribution of the six wild populations did not follow any geographical trend, since their genetic divergence did not seem to correlate to geographic distances. However, RAPD profiles of some reared and wild specimens were different from the common RAPD pattern observed in the vast majority of sampled hares, probably reflecting an admixture of genetically differentiated individuals. The RAPD analysis indicates that releases might have begun to affect Greek population structure and reinforces the view that appropriate management is needed, adjusted to the local populations' biology and ecology.  相似文献   

14.
Restoring degraded landscapes has primarily focused on re‐establishing native plant communities. However, little is known with respect to the diversity and distribution of most key revegetation species or the environmental and anthropogenic factors that may affect their demography and genetic structure. In this study, we investigated the genetic structure of two widespread Australian legume species (Acacia salicina and Acacia stenophylla) in the Murray–Darling Basin (MDB), a large agriculturally utilized region in Australia, and assessed the impact of landscape structure on genetic differentiation. We used AFLP genetic data and sampled a total of 28 A. salicina and 30 A. stenophylla sampling locations across southeastern Australia. We specifically evaluated the importance of four landscape features: forest cover, land cover, water stream cover, and elevation. We found that both species had high genetic diversity (mean percentage of polymorphic loci, 55.1% for A. salicina versus. 64.3% for A. stenophylla) and differentiation among local sampling locations (A. salicina: ΦPT = 0.301, 30%; A. stenophylla: ΦPT = 0.235, 23%). Population structure analysis showed that both species had high levels of structure (6 clusters each) and admixture in some sampling locations, particularly A. stenophylla. Although both species have a similar geographic range, the drivers of genetic connectivity for each species were very different. Genetic variation in A. salicina seems to be mainly driven by geographic distance, while for A. stenophylla, land cover appears to be the most important factor. This suggests that for the latter species, gene flow among populations is affected by habitat fragmentation. We conclude that these largely co‐occurring species require different management actions to maintain population connectivity. We recommend active management of A. stenophylla in the MDB to improve gene flow in the adversity of increasing disturbances (e.g., droughts) driven by climate change and anthropogenic factors.  相似文献   

15.
To better design association studies for complex traits in isolated populations it''s important to understand how history and isolation moulded the genetic features of different communities. Population isolates should not “a priori” be considered homogeneous, even if the communities are not distant and part of a small region. We studied a particular area of Sardinia called Ogliastra, characterized by the presence of several distinct villages that display different history, immigration events and population size. Cultural and geographic isolation characterized the history of these communities. We determined LD parameters in 8 villages and defined population structure through high density SNPs (about 360 K) on 360 unrelated people (45 selected samples from each village). These isolates showed differences in LD values and LD map length. Five of these villages show high LD values probably due to their reduced population size and extreme isolation. High genetic differentiation among villages was detected. Moreover population structure analysis revealed a high correlation between genetic and geographic distances. Our study indicates that history, geography and biodemography have influenced the genetic features of Ogliastra communities producing differences in LD and population structure. All these data demonstrate that we can consider each village an isolate with specific characteristics. We suggest that, in order to optimize the study design of complex traits, a thorough characterization of genetic features is useful to identify the presence of sub-populations and stratification within genetic isolates.  相似文献   

16.
Understanding subsequent dispersal of non-native species following introduction is important for predicting the extent and speed of range expansion and is critical for effective management and risk assessment. Post-introduction dispersal may occur naturally or via human transport, but assessing the relative contribution of each is difficult for many organisms. Here, we use data from seven microsatellite markers to study patterns of dispersal and gene flow among 12 pierhead populations of the round goby (Neogobius melanostomus) in Lake Michigan. We find significant population structure among sampling sites within this single Great Lake: (1) numerous populations exhibited significant pairwise F ST and (2) a Bayesian assignment analysis revealed three distinct genetic clusters, corresponding to different pierhead locations, and genetic admixture between these clusters in the remaining populations. Genetic differentiation (F ST) is generally related to geographic distance (i.e., isolation by distance), but is periodically interrupted at the scale of Lake Michigan due to gene flow among geographically distant sites. Moreover, average genetic differentiation among populations exhibit a significant, negative correlation with the amount of shipping cargo at ports. Our results, therefore, provide evidence that genetic structure of the round goby in Lake Michigan results from limited natural dispersal with frequent long-distance dispersal through anthropogenic activities such as commercial shipping. Our study suggests that while round gobies can undoubtedly disperse and found new populations through natural dispersal mechanisms, their spread within and among the Great Lakes is likely aided by transport via ships. We, therefore, recommend that ballast-water treatment and management may limit the spread of non-native species within the Great Lakes after the initial introduction in addition to preventing the introduction of non-native species to the Great Lakes.  相似文献   

17.
Three approaches were employed to evaluate the relative importance of geographic and linguistic factors in maintaining genetic differentiation of Italian populations as shown by blood groups and erythrocyte and serum markers. Genetic distances are closer to linguistic than to geographic distances. Gene-frequency change across 12 linguistic boundaries is significantly more rapid than at random locations. The zones of sharp genetic variation correspond to physical barriers to gene flow and to boundaries between dialect families, which overlap widely. However, two linguistically differentiated populations appear genetically differentiated despite the absence of physical obstacles to gene flow around them. The Po River is associated with abrupt genetic change only in the area where it corresponds to a dialect boundary. At most loci the genetic population structure seems affected by linguistic rather than geographic factors; exceptions are the systems that were subject to malarial selection in geographically close but linguistically heterogeneous localities. Gene flow appears to homogenize gene frequencies within regions corresponding to dialect families but not between them, leading to the patchy distributions of allele frequencies that were detected in an earlier study.  相似文献   

18.
Isolation by distance is usually tested by the correlation of genetic and geographic distances separating all pairwise populations' combinations. However, this method can be significantly biased by only a few highly diverged populations and lose the information of individual population. To detect outlier populations and investigate the relative strengths of gene flow and genetic drift for each population, we propose a decomposed pairwise regression analysis. This analysis was applied to the well-described one-dimensional stepping-stone system of stream-dwelling Dolly Varden charr ( Salvelinus malma ). When genetic and geographic distances were plotted for all pairs of 17 tributary populations, the correlation was significant but weak ( r 2 = 0.184). Seven outlier populations were determined based on the systematic bias of the regression residuals, followed by Akaike's information criteria. The best model, 10 populations included, showed a strong pattern of isolation by distance ( r 2 = 0.758), suggesting equilibrium between gene flow and genetic drift in these populations. Each outlier population was also analysed by plotting pairwise genetic and geographic distances against the 10 nonoutlier populations, and categorized into one of the three patterns: strong genetic drift, genetic drift with a limited gene flow and a high level of gene flow. These classifications were generally consistent with a priori predictions for each population (physical barrier, population size, anthropogenic impacts). Combined the genetic analysis with field observations, Dolly Varden in this river appeared to form a mainland-island or source-sink metapopulation structure. The generality of the method will merit many types of spatial genetic analyses.  相似文献   

19.
Abstract: Fishers (Martes pennanti) were extirpated from much of southern Ontario, Canada, prior to the 1950s. We hypothesised that the recent recolonization of this area originated from an expansion of the population in Algonquin Provincial Park, which historically served as a refuge for fishers. To test this hypothesis, we created a sampling lattice to encompass Algonquin and the surrounding area, and we collected contemporaneous DNA samples. We sampled fishers from each of 35 sites and genotyped them at 16 microsatellite loci. Using a Bayesian assignment approach, with no a priori geographic information, we inferred 5 discrete genetic populations and used genetic population assignment as a means to cluster sites together. We concluded that the Algonquin Park fisher population has not been a substantial source for recolonization and expansion, which has instead occurred from a number of remnant populations within Ontario, Quebec, and most recently from the Adirondacks in New York, USA. The genetic structure among sampling sites across the entire area revealed a pattern of isolation-by-distance (IBD). However, an examination of the distribution of genetic structure (FST/1- FST) at different distances showed higher rates of gene flow than predicted under a strict IBD model at small distances (40 km) within clusters and at larger distances up to 100 km among clusters. This pattern of genetic structure suggests increased migration and gene flow among expanding reproductive fronts.  相似文献   

20.
Acacias across Africa have enormous ecological and economic importance, yet their population genetics are poorly studied. We used seven microsatellite loci to investigate spatial genetic structure and to identify potential ecological and geographic barriers to dispersal in the widespread acacia, Senegalia (Acacia) mellifera. We quantified variation among 791 individuals from 28 sampling locations, examining patterns at two spatial scales: (i) across Kenya including the Rift Valley, and (ii) for a local subset of 11 neighbouring locations on Mpala Ranch in the Laikipia plateau. Our analyses recognize that siblings can often be included in samples used to measure population genetic structure, violating fundamental assumptions made by these analyses. To address this potential problem, we maximized genetic independence of samples by creating a sibship-controlled data set that included only one member of each sibship and compared the results obtained with the full data set. Patterns of genetic structure and barriers to gene flow were essentially similar when the two data sets were analysed. Five well-defined geographic regions were identified across Kenya within which gene flow was localized, with the two strongest barriers to dispersal splitting the Laikipia Plateau of central Kenya from the Western and Eastern Rift Valley. At a smaller scale, in the absence of geographic features, regional habitat gradients appear to restrict gene flow significantly. We discuss the implications of our results for the management of this highly exploited species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号