首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Allen S  Badarau A  Dennison C 《Biochemistry》2012,51(7):1439-1448
The delivery of copper by the human metallochaperone CCS is a key step in the activation of Cu,Zn-superoxide dismutase (SOD1). CCS is a three-domain protein with Cu(I)-binding CXXC and CXC motifs in domains 1 and 3, respectively. A detailed analysis of the binding of copper to CCS, including variants in which the Cys residues from domains 1 and 3 have been mutated to Ser, and also using separate domain 1 and 3 constructs, demonstrates that CCS is able to bind 1 equiv of Cu(I) in both of these domains. The Cu(I) affinity of domain 1 is approximately 5 × 10(17) M(-1) at pH 7.5, while that of domain 3 is at least 1 order of magnitude weaker. The CXXC site will therefore be preferentially loaded with Cu(I), suggesting that domain 1 plays a role in the acquisition of the metal. The delivery of copper to the target occurs via domain 3 whose structural flexibility and ability to be transiently metalated during copper delivery appear to be more important than the Cu(I) affinity of its CXC motif. The Cu(I) affinity of domain 1 of CCS is comparable to that of HAH1, another cytosolic copper metallochaperone. CCS and HAH1 readily exchange Cu(I), providing a mechanism whereby cross-talk can occur between copper trafficking pathways.  相似文献   

3.
Protection against reactive oxygen species is provided by the copper containing enzyme superoxide dismutase 1 (SOD1). The copper chaperone CCS is responsible for copper insertion into apo-SOD1. This role is impaired by an interaction between the second PDZ domain (PDZ2α) of the neuronal adaptor protein X11α and the third domain of CCS (McLoughlin et al. (2001) J. Biol. Chem., 276, 9303–9307). The solution structure of the PDZ2α domain has been determined and the interaction with peptides derived from CCS has been explored. PDZ2α binds to the last four amino acids of the CCS protein (PAHL) with a dissociation constant of 91 ± 2 μM. Peptide variants have been used to map the interaction areas on PDZ2α for each amino acid, showing an important role for the C-terminal leucine, in line with canonical PDZ-peptide interactions.Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

4.

Background  

Amyotrophic lateral sclerosis (ALS) is a progressive lethal disorder of large motor neurons of the spinal cord and brain. In approximately 20% of the familial and 2% of sporadic cases the disease is due to a defect in the gene encoding the cytosolic antioxidant enzyme Cu, Zn-superoxide dismutase (SOD1). The underlying molecular defect is known only in a very small portion of the remaining cases and therefore involvement of other genes is likely. As SOD1 receives copper, essential for its normal function, by the copper chaperone, CCS (Copper Chaperone for SOD), we considered CCS as a potential candidate gene for ALS.  相似文献   

5.
The copper chaperone for superoxide dismutase (CCS) is an intracellular metallochaperone required for incorporation of copper into the essential antioxidant enzyme copper/zinc superoxide dismutase (SOD1). Nutritional studies have revealed that the abundance of CCS is inversely proportional to the dietary and tissue copper content. To determine the mechanisms of copper-dependent regulation of CCS, copper incorporation into SOD1 and SOD1 enzymatic activity as well as CCS abundance and half-life were determined after metabolic labeling of CCS-/- fibroblasts transfected with wild-type or mutant CCS. Wild-type CCS restored SOD1 activity in CCS-/- fibroblasts, and the abundance of this chaperone in these cells was inversely proportional to the copper content of the media, indicating that copper-dependent regulation of CCS is entirely post-translational. Although mutational studies demonstrated no role for CCS Domain I in this copper-dependent regulation, similar analysis of the CXC motif in Domain III revealed a critical role for these cysteine residues in mediating copper-dependent turnover of CCS. Further mutational studies revealed that this CXC-dependent copper-mediated turnover of CCS is independent of the mechanisms of delivery of copper to SOD1 including CCS-SOD1 interaction. Taken together these data demonstrate a mechanism determining the abundance of CCS that is competitive with the process of copper delivery to SOD1, revealing a unique post-translational component of intracellular copper homeostasis.  相似文献   

6.
The copper chaperone for superoxide dismutase (CCS) activates the eukaryotic antioxidant enzyme copper, zinc superoxide dismutase (SOD1). The 2.9 A resolution structure of yeast SOD1 complexed with yeast CCS (yCCS) reveals that SOD1 interacts with its metallochaperone to form a complex comprising one monomer of each protein. The heterodimer interface is remarkably similar to the SOD1 and yCCS homodimer interfaces. Striking conformational rearrangements are observed in both the chaperone and target enzyme upon complex formation, and the functionally essential C-terminal domain of yCCS is well positioned to play a key role in the metal ion transfer mechanism. This domain is linked to SOD1 by an intermolecular disulfide bond that may facilitate or regulate copper delivery.  相似文献   

7.
8.
Abstract : Copper trafficking in mammalian cells is highly regulated. CCS is a copper chaperone that donates copper to the antioxidant enzyme copper/zinc superoxide dismutase 1 (SOD 1). Mutations of SOD1 are responsible for ~20% of familial amyotrophic lateral sclerosis (FALS). Monospecific antibodies were generated to evaluate the localization and cellular distribution of this copper chaperone in human and mouse brain as well as other organs. CCS is found to be ubiquitously expressed by multiple tissues and is present in particularly high concentrations in kidney and liver. In brain and spinal cord, CCS was found throughout the neuropil, with expression largely confined to neurons and some astrocytes. Like SOD1, CCS immunoreactivity was intense in Purkinje cells, deep cerebellar neurons, and pyramidal cortical neurons, whereas in spinal cord, CCS was highly expressed in motor neurons. In cortical neurons, CCS was present in the soma and proximal dendrites, as well as some axons. Although the distribution of CCS paralleled that of SOD1, there was a 12-30-fold molar excess of SOD1 over CCS. That both SOD1 and CCS are present, together, in cells that degenerate in ALS also emphasizes the potential role of CCS in mutant SOD1-mediated toxicity.  相似文献   

9.
Copper chaperones: function, structure and copper-binding properties   总被引:5,自引:0,他引:5  
 Copper is an absolute requirement for living systems and the intracellular trafficking of this metal to copper-dependent proteins is fundamental to normal cellular metabolism. The copper chaperones perform the dual functions of trafficking and the prevention of cytoplasmic exposure to copper ions in transit. Only a small number of copper chaperones have been identified at this time but their conservation across plant, bacterial and animal species suggests that the majority of living systems utilise these proteins for copper routing. The available data suggest that each copper-dependent protein in the cell is served by a specific copper chaperone. Although copper chaperones cannot be substituted for one another in a given cell type, copper chaperones that deliver to the same protein in different cell types appear to be functionally equivalent. The majority of the copper chaperones identified thus far have an "open-faced β-sandwich" global fold with a conserved MXCXXC metal-binding motif. Specificity for a given copper-dependent protein appears to be mediated by the residues surrounding the copper-binding motif. Copper binds to such proteins as Cu(I) in a trigonal complex with three sulfur ligands. Only the copper chaperone specific for cytochrome-c-oxidase, Cox17, deviates from this design. Received: 12 October 1998 / Accepted: 7 December 1998  相似文献   

10.
The human copper chaperone for superoxide dismutase (hCCS) delivers the essential copper ion cofactor to copper,zinc superoxide dismutase (SOD1), a key enzyme in antioxidant defense. Mutations in SOD1 are linked to familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder. The molecular mechanisms by which SOD1 is recognized and activated by hCCS are not understood. To better understand this biochemical pathway, we have determined the X-ray structure of the largest domain of hCCS (hCCS Domain II) to 2. 75 A resolution. The overall structure is closely related to that of its target enzyme SOD1, consisting of an eight-stranded beta-barrel and a zinc-binding site formed by two extended loops. The first of these loops provides the ligands to a bound zinc ion, and is analogous to the zinc subloop in SOD1. The second structurally resembles the SOD1 electrostatic channel loop, but lacks many of the residues important for catalysis. Like SOD1 and yCCS, hCCS forms a dimer using a highly conserved interface. In contrast to SOD1, however, the hCCS structure does not contain a copper ion bound in the catalytic site. Notably, the structure reveals a single loop proximal to the dimer interface which is unique to the CCS chaperones.  相似文献   

11.
Cellular copper homeostasis requires transmembrane transport and compartmental trafficking while maintaining the cell essentially free of uncomplexed Cu2+/+. In bacteria, soluble cytoplasmic and periplasmic chaperones bind and deliver Cu+ to target transporters or metalloenzymes. Transmembrane Cu+-ATPases couple the hydrolysis of ATP to the efflux of cytoplasmic Cu+. Cytosolic Cu+ chaperones (CopZ) interact with a structural platform in Cu+-ATPases (CopA) and deliver copper into the ion permeation path. CusF is a periplasmic Cu+ chaperone that supplies Cu+ to the CusCBA system for efflux to the extracellular milieu. In this report, using Escherichia coli CopA and CusF, direct Cu+ transfer from the ATPase to the periplasmic chaperone was observed. This required the specific interaction of the Cu+-bound form of CopA with apo-CusF for subsequent metal transfer upon ATP hydrolysis. As expected, the reverse Cu+ transfer from CusF to CopA was not observed. Mutation of CopA extracellular loops or the electropositive surface of CusF led to a decrease in Cu+ transfer efficiency. On the other hand, mutation of Met and Glu residues proposed to be part of the metal exit site in the ATPase yielded enzymes with lower turnover rates, although Cu+ transfer was minimally affected. These results show how soluble chaperones obtain Cu+ from transmembrane transporters. Furthermore, by explaining the movement of Cu+ from the cytoplasmic pool to the extracellular milieu, these data support a mechanism by which cytoplasmic Cu+ can be precisely directed to periplasmic targets via specific transporter-chaperone interactions.  相似文献   

12.
Insertion of copper into superoxide dismutase 1 (SOD1) in vivo requires the copper chaperone for SOD1 (CCS). CCS encompasses three protein domains: copper binding Domains I and III at the amino and carboxyl termini, and a central Domain II homologous to SOD1. Using a yeast interaction mating system, yeast CCS was seen to physically interact with SOD1, and this interaction required sequences at the predicted dimer interface of CCS Domain II. Interactions with SOD1 also required sequences of Domain III, but not Domain I. Mutations were introduced at the dimer interface of yeast SOD1, and the corresponding mutant failed to interact with CCS. When loaded with copper independent of CCS, this mutant SOD1 exhibited superoxide scavenging activity, but was normally inactive in vivo because CCS failed to recognize the enzyme. Activation of SOD1 by CCS was also examined using an in vivo assay for copper incorporation into SOD1. Yeast CCS was observed to insert copper into a pre-existing pool of apoSOD1 without the need for new SOD1 synthesis or for protein unfolding by the major SSA cytosolic heat shock proteins. Our data are consistent with a model in which prefolded dimers of apoSOD1 serve as substrate for the CCS copper chaperone.  相似文献   

13.
BackgroundIn-cell NMR is a powerful technique to investigate proteins in living human cells at atomic resolution. Ideally, when studying functional processes involving protein–protein interactions by NMR, only one partner should be isotopically labeled. Here we show that constitutive and transient protein expression can be combined with protein silencing to obtain selective protein labeling in human cells.MethodsWe established a human cell line stably overexpressing the copper binding protein HAH1. A second protein (human superoxide dismutase 1, SOD1) was overexpressed by transient transfection and isotopically labeled. A silencing vector containing shRNA sequences against the HAH1 gene was used to decrease the rate of HAH1 synthesis during the expression of SOD1. The levels of HAH1 mRNA and protein were measured as a function of time following transfection by RT-PCR and Western Blot, and the final cell samples were analyzed by in-cell NMR.ResultsSOD1 was ectopically expressed and labeled in a time window during which HAH1 biosynthesis was strongly decreased by shRNA, thus preventing its labeling. In-cell NMR spectra confirmed that, while both proteins were present, only SOD1 was selectively labeled and could be detected by 1H–15N heteronuclear NMR.Conclusions and general significanceWe showed that controlling protein expression by specifically silencing a stably expressed protein is a useful strategy to obtain selective isotope labeling of only one protein. This approach relies on established techniques thus permitting the investigation of protein–protein interactions by NMR in human cells.  相似文献   

14.
Copper depletion of bacterial laccases obtained by heterologous expression in Escherichia coli is a common problem in production of these versatile biocatalysts. We demonstrate that coexpression of small soluble copper chaperones can mitigate this problem. The laccase CotA and the copper chaperone CopZ both from Bacillus licheniformis were used as model system. The use of the E. coli BL21(DE3) strain expressing CopZ and CotA simultaneously from two plasmids resulted in an 20% increase in copper occupancy and in 26% higher specific activity. We conclude that not only intracellular copper ion concentration, but also presence of an appropriate copper chaperone influences copper ion insertion into CotA laccase. Moreover, E. coli BL21(DE3) seems to lack such a copper chaperone which can be partially complemented by heterologous expression thereof. The presented system is simple and can routinely be used for improved heterologous production of bacterial laccase in E. coli.  相似文献   

15.
This review summarizes findings on a new family of small cytoplasmic proteins called copper chaperones. The copper chaperones bind and deliver copper ions to intracellular compartments and insert the copper into the active sites of specific partners, copper-dependent enzymes. Three types of copper chaperones have been found in eukaryotes. Their three-dimensional structures have been determined, intracellular target proteins identified, and mechanisms of action have been revealed. The Atx1 copper chaperone binds Cu(I) and interacts directly with the copper-binding domains of a P-type ATPase copper transporter, its physiological partner. The copper chaperone CCS delivers Cu(I) to Cu,Zn-superoxide dismutase 1. Cox17 and Cox11 proteins serve as copper chaperones for cytochrome c oxidase, a copper-dependent enzyme.  相似文献   

16.
The neuronal adaptor protein X11alpha participates in the formation of multiprotein complexes and intracellular trafficking. It contains a series of discrete protein-protein interaction domains including two contiguous C-terminal PDZ domains. We used the yeast two-hybrid system to screen for proteins that interact with the PDZ domains of human X11alpha, and we isolated a clone encoding domains II and III of the copper chaperone for Cu,Zn-superoxide dismutase-1 (CCS). The X11alpha/CCS interaction was confirmed in coimmunoprecipitation studies plus glutathione S-transferase fusion protein pull-down assays and was shown to be mediated via PDZ2 of X11alpha and a sequence within the carboxyl terminus of domain III of CCS. CCS delivers the copper cofactor to the antioxidant superoxide dismutase-1 (SOD1) enzyme and is required for its activity. Overexpression of X11alpha inhibited SOD1 activity in transfected Chinese hamster ovary cells which suggests that X11alpha binding to CCS is inhibitory to SOD1 activation. X11alpha also interacts with another copper-binding protein found in neurons, the Alzheimer's disease amyloid precursor protein. Thus, X11alpha may participate in copper homeostasis within neurons.  相似文献   

17.
Wilson disease (WD) and Menkes disease (MNK) are inherited disorders of copper metabolism. The genes that mutate to give rise to these disorders encode highly homologous copper transporting ATPases. We use yeast and mammalian two-hybrid systems, along with an in vitro assay to demonstrate a specific, copper-dependent interaction between the six metal-binding domains of the WD and MNK ATPases and the cytoplasmic copper chaperone HAH1. We demonstrate that several metal-binding domains interact independently or in combination with HAH1p, although notably domains five and six of WDp do not. Alteration of either the Met or Thr residue of the HAH1p MTCXXC motif has no observable effect on the copper-dependent interaction, whereas alteration of either of the two Cys residues abolishes the interaction. Mutation of any one of the HAH1p C-terminal Lys residues (Lys(56), Lys(57), or Lys(60)) to Gly does not affect the interaction, although deletion of the 15 C-terminal residues abolishes the interaction. We show that apo-HAH1p can bind in vitro to copper-loaded WDp, suggesting reversibility of copper transfer from HAH1p to WD/MNKp. The in vitro HAH1/WDp interaction is metalospecific; HAH1 preincubated with Cu(2+) or Hg(+) but not with Zn(2+), Cd(2+), Co(2+), Ni(3+), Fe(3+), or Cr(3+) interacted with WDp. Finally, we model the protein-protein interaction and present a theoretical representation of the HAH1p.Cu.WD/MNKp complex.  相似文献   

18.
19.
We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. We have cloned both copper pumps, expressed them in Escherichia coli and characterized them functionally. CtrA2 is activated by Ag+ and Cu+ and presumably transports reduced Cu+, while CtrA3 is activated by, and presumably transports, the oxidized copper ion. Both CtrA2 and CtrA3 are thermophilic proteins with an activity maximum at 75 °C. Electron cryomicroscopy of two-dimensional crystals of CtrA3 yielded a projection map at ∼7 Å resolution with density peaks, indicating eight membrane-spanning α-helices per monomer. A fit of the Ca-ATPase structure to the projection map indicates that the arrangement of the six central helices surrounding the ion-binding site in the membrane is conserved, and suggests the position of the two additional N-terminal transmembrane helices that are characteristic of the heavy metal, eight-helix P1B-type ATPases.  相似文献   

20.
Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker’s yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80 % similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS–SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号