共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究芪丹通脉片对骨髓间充质干细胞向缺血心肌趋化迁移的作用。方法:SD大鼠,随机分为单纯移植组,益气组,活血组。芪丹通脉片组,各组大鼠灌服中药14天后,采用冠状动脉左前降支结扎法建立心肌梗死模型。经尾静脉注入DIO标记的骨髓间充质干细胞,3天后取缺血部位的心肌,应用流式细胞仪分析计算出每克心肌所含有的DIO阳性细胞数;行冰冻切片,采用荧光显微镜观察DIO阳性细胞;4周后采用多导生理记录仪记录大鼠平均动脉压(MAP)、左心室收缩峰压(LVPSP)、左心室内压最大上升变化速率(+LVdp/dtmax)和最大下降速率(-LVdp/dtmax)。结果:芪丹通脉片组较益气组、活血组、单纯移植组,每克心肌所含有的DIO阳性细胞数增多,其差异有统计学意义;冰冻切片镜下观察,芪丹通脉片组阳性细胞数较益气组、活血组、单纯移植组增多,其差异有统计学意义;心功能检测示:芪丹通脉片组MAP、LVPSP、+LVdp/dtmax、-LVdp/dtmax较益气组、活血组、单纯移植组改善明显,差异有统计学意义。结论:芪丹通脉片具有促进骨髓间充质干细胞向缺血心肌趋化迁移的作用,益气与活血中药配伍应用优于单纯益气药或活血药。 相似文献
2.
Studies have shown that allogeneic (allo-) bone marrow derived mesenchymal stem cells (BM-MSCs) may enhance tissue repair/regeneration. However, recent studies suggest that immune rejection may occur to allo-MSCs leading to reduced engraftment. In this study, we compared allo-BM-MSCs with syngeneic BM-MSCs or allo-fibroblasts in engraftment and effect in wound healing. Equal numbers of GFP-expressing allo-BM-MSCs, syngeneic BM-MSCs or allo-fibroblasts were implanted into excisional wounds in GFP-negative mice. Quantification of GFP-expressing cells in wounds at 7, 14 and 28 days indicated similar amounts of allogeneic or syngeneic BM-MSCs but significantly reduced amounts of allo-fibroblasts. With healing progression, decreasing amounts of allogeneic and syngeneic BM-MSCs were found in the wound; however, the reduction was more evident (2 fold) in allo-fibroblasts. Similar effects in enhancing wound closure were found in allogeneic and syngeneic BM-MSCs but not in allo-fibroblasts. Histological analysis showed that allo-fibroblasts were largely confined to the injection sites while allo-BM-MSCs had migrated into the entire wound. Quantification of inflammatory cells in wounds showed that allo-fibroblast- but not allo-BM-MSC-treated wounds had significantly increased CD45+ leukocytes, CD3+ lymphocytes and CD8+ T cells. Our study suggests that allogeneic BM-MSCs exhibit ignorable immunogenicity and are equally efficient as syngeneic BM-MSCs in engraftment and in enhancing wound healing. 相似文献
3.
Amina Bouacida Philippe Rosset Valérie Trichet Fabien Guilloton Nicolas Espagnolle Thomas Cordonier Dominique Heymann Pierre Layrolle Luc Sensébé Frédéric Deschaseaux 《PloS one》2012,7(11)
Mesenchymal stem cells (MSCs) and pericyte progenitors (PPs) are both perivascular cells with similar multipotential properties regardless of tissue of origin. We compared the phenotype and function of the 2 cell types derived from the same bone-marrow samples but expanded in their respective media – pericyte conditions (endothelial cell growth medium 2 [EGM-2]) for PPs and standard medium (mesenchymal stem cell medium [MSM]) for MSCs. After 3 weeks of culture, whatever the expansion medium, all cells showed similar characteristics (MSC markers and adipo-osteo-chondroblastic differentiation potential), although neuronal potential was greater in EGM-2– than MSM-cultured cells. As compared with MSM-cultured MSCs, EGM-2–cultured PPs showed higher expression of the pericyte-specific antigen 3G5 than α-smooth muscle actin. In addition, EGM-2–cultured PPs showed an immature phenotype, with upregulation of stemness OCT4 and SOX2 proteins and downregulation of markers of osteoblastic, chondroblastic, adipocytic and vascular smooth muscle lineages. Despite having less effective in vitro immunosuppression capacities than standard MSCs, EGM-2–cultured PPs had higher engraftment potentials when combined with biomaterials heterotopically-transplanted in Nude mice. Furthermore, these engrafted cells generated more collagen matrix and were preferentially perivascular or lined trabeculae as compared with MSM-cultured MSCs. In conclusion, EGM-2–cultured PPs are highly immature cells with increased plasticity and engraftment potential. 相似文献
4.
Chunxiu Chen Fengfeng Chen Chengye Yao Shaofang Shu Juan Feng Xiaoling Hu Quan Hai Shanglong Yao Xiangdong Chen 《Neurochemical research》2016,41(12):3250-3260
Neuropathic pain (NP) is a clinically incurable disease with miscellaneous causes, complicated mechanisms and available therapies show poor curative effect. Some recent studies have indicated that neuroinflammation plays a vital role in the occurrence and promotion of NP and anti-inflammatory therapy has the potential to relieve the pain. During the past decades, mesenchymal stem cells (MSCs) with properties of multipotentiality, low immunogenicity and anti-inflammatory activity have showed excellent therapeutic effects in cell therapy from animal models to clinical application, thus aroused great attention. However there are no reports about the effect of intrathecal human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on NP which is induced by peripheral nerve injury. Therefore, in this study, intrathecally transplanted HUC-MSCs were utilized to examine the effect on neuropathic pain induced by a rat model with spinal nerve ligation (SNL), so as to explore the possible mechanism of those effects. As shown in the results, the HUC-MSCs transplantation obviously ameliorated SNL-induced mechanical allodynia and thermal hyperalgesia, which was related to the inhibiting process of neuroinflammation, including the suppression of activated astrocytes and microglia, as well as the significant reduction of pro-inflammatory cytokines Interleukin-1β (IL-1β) and Interleukin ?17A (IL-17A) and the up-regulation of anti-inflammatory cytokine Interleukin ?10 (IL-10). Therefore, through the effect on glial cells, pro-inflammatory and anti-inflammatory cytokine, the targeting intrathecal HUC-MSCs may offer a novel treatment strategy for NP. 相似文献
5.
This article has no abstract. 相似文献
6.
目的:研究缺血后处理对缺血再灌注心肌保护的相关蛋白的变化。方法:将6只新西兰大白兔随机分为两组(每组3只):心肌缺血再灌注对照组(I/R组)和缺血后处理组(P组)。两组均接受左冠状动脉前降支阻断30min,开放再灌注180min。缺血后处理组,结扎LAD30min,然后灌注30s,阻断30s,重复4次,继而再灌注直至180min,分别取各组缺血区心肌进行二维凝胶电泳,利用ImageMaster2D软件分析实验结果。结果:P组和I/R组对比,有11个蛋白表达发生了显著变化,其中表达增强的有7个蛋白,表达降低的有4个蛋白。结论:这些差异表达的蛋白可能在缺血后处理对心肌缺血再灌注损伤的保护中发挥了作用。 相似文献
7.
8.
Soo Hyun Lee Kyung Sil Jin Oh Young Bang Byoung Joon Kim Soo Jin Park Na Hee Lee Keon Hee Yoo Hong Hoe Koo Ki Woong Sung 《PloS one》2015,10(8)
To evaluate the optimal timing of mesenchymal stem cell (MSC) transplantation following stroke, rats were transplanted with MSCs at 1 (D1), 4 (D4), and 7 days (D7) after middle cerebral artery occlusion (MCAo). Rats in the D1 group showed a better functional recovery than those in the D4 or D7 groups after MCAo. MSCs preferentially migrated to the cortex in the D1 group, while the MSCs in the D4 or D7 groups preferentially migrated to the striatum. Interestingly, the level of monocyte chemotactic protein-1 (MCP-1) in the cortex was highest at 1 day after MCAo, while the level of stromal cell-derived factor-1 (SDF-1) in the striatum was lowest at 1 day after MCAo and then increased over time. The pattern of MCP-1 and SDF-1 level changes according to the time after MCAo was consistent with in vivo and in vitro migration patterns of MSCs. The results suggest that an earlier MSC transplantation is associated with a better functional recovery after stroke, which could be explained by the preferential migration of MSCs to the cortex in the early transplantation group. The time-dependent differential expression of MCP-1 and SDF-1 between ischemic regions seemed to mediate the differential migration of MSCs. Highest level of MCP-1 at one day of stroke may induce preferential migration of MSCs to the cortex, then better functional improvement. 相似文献
9.
该文旨在比较人滑膜间充质干细胞(human synovial mesenchymal stem cells,hSMSCs)与人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)的生物学性状.流式细胞仪鉴定hSMSCs和hUC-MSCs.比较两种间... 相似文献
10.
自然存在的间充质干细胞数量少,限制了其研究应用。依靠自主发明的间充质干细胞过滤分离器,分离制备了人羊膜间充质干细胞,并对制备的干细胞进行了三维培养扩增。结果表明,制备的干细胞形态长势良好,并能诱导分化为类胰岛样组织。与常规方法相比,干细胞收获率提高了8倍以上,且细胞活性状态良好。间充质干细胞过滤分离器可以批量制备高质量的各种间充质干细胞,有利于高效率地建设各种间充质干细胞库,以促进间充质干细胞的研究应用。 相似文献
11.
Mesenchymal stem cells (MSC) are adult-derived multipotent stem cells that have been derived from almost every tissue. They are classically defined as spindle-shaped, plastic-adherent cells capable of adipogenic, chondrogenic, and osteogenic differentiation. This capacity for trilineage differentiation has been the foundation for research into the use of MSC to regenerate damaged tissues. Recent studies have shown that MSC interact with cells of the immune system and modulate their function. Although many of the details underlying the mechanisms by which MSC modulate the immune system have been defined for human and rodent (mouse and rat) MSC, much less is known about MSC from other veterinary species. This knowledge gap is particularly important because the clinical use of MSC in veterinary medicine is increasing and far exceeds the use of MSC in human medicine. It is crucial to determine how MSC modulate the immune system for each animal species as well as for MSC derived from any given tissue source. A comparative approach provides a unique translational opportunity to bring novel cell-based therapies to the veterinary market as well as enhance the utility of animal models for human disorders. The current review covers what is currently known about MSC and their immunomodulatory functions in veterinary species, excluding laboratory rodents.Abbreviations: AT, adipose tissue; BM, Bone marrow; CB, umbilical cord blood; CT, umbilical cord tissue; DC, dendritic cell; IDO, indoleamine 2;3-dioxygenase; MSC, mesenchymal stem cells; PGE2, prostaglandin E2; VEGF, vascular endothelial growth factorMesenchymal stem cells (MSC, alternatively known as mesenchymal stromal cells) were first reported in the literature in 1968.39 MSC are thought to be of pericyte origin (cells that line the vasculature)21,22 and typically are isolated from highly vascular tissues. In humans and mice, MSC have been isolated from fat, placental tissues (placenta, Wharton jelly, umbilical cord, umbilical cord blood), hair follicles, tendon, synovial membrane, periodontal ligament, and every major organ (brain, spleen, liver, kidney, lung, bone marrow, muscle, thymus, pancreas, skin).23,121 For most current clinical applications, MSC are isolated from adipose tissue (AT), bone marrow (BM), umbilical cord blood (CB), and umbilical cord tissue (CT; 11,87,99 Clinical trials in human medicine focus on the use of MSC both for their antiinflammatory properties (graft-versus-host disease, irritable bowel syndrome) and their ability to aid in tissue and bone regeneration in combination with growth factors and bone scaffolds (clinicaltrials.gov).131 For tissue regeneration, the abilities of MSC to differentiate and to secrete mediators and interact with cells of the immune system likely contribute to tissue healing (Figure 1). The current review will not address the specific use of MSC for orthopedic applications and tissue regeneration, although the topic is covered widely in current literature for both human and veterinary medicine.57,62,90
Open in a separate windowOpen in a separate windowFigure 1.The dual roles of MSC: differentiation and modulation of inflammation.Long-term studies in veterinary species have shown no adverse effects with the administration of MSC in a large number of animals.9,10,53 Smaller, controlled studies on veterinary species have shown few adverse effects, such as minor localized inflammation after MSC administration in vivo.7,15,17,45,86,92,98 Private companies, educational institutions, and private veterinary clinics (including Tufts University, Cummins School of Veterinary Medicine, University of California Davis School of Veterinary Medicine, VetStem, Celavet, Alamo Pintado Equine Medical Center, and Rood and Riddle Equine Hospital) offer MSC as a clinical treatment for veterinary species. Clinical uses include tendon and cartilage injuries, tendonitis, and osteoarthritis and, to a lesser extent, bone regeneration, spinal cord injuries, and liver disease in both large and small animals.38,41,113 Even with this broad clinical use, there have been no reports of severe adverse effects secondary to MSC administration in veterinary patients. 相似文献
Table 1.
Tissues from which MSC have been isolatedTissue source (reference no.) | |||||
Species | Fat | Bone marrow | Cord blood | Cord tissue | Other |
Cat | 134 | 83 | 56 | ||
Chicken | 63 | ||||
Cow | 138 | 12 | 108 | ||
Dog | 97 | 3, 59 | 78, 119 | 139 | Periodontal ligament65 |
Goat | 66 | 96 | 4 | ||
Horse | 26, 130 | 37, 40, 123 | 67 | 130 | Periodontal ligament and gingiva88 |
Nonhuman primate | 28, 54 | 5 | |||
Pig | 135 | 114 | 70 | 14, 20, 91 | |
Rabbit | 128 | 80 | 32 | Fetal liver93 | |
Sheep | 84 | 95 | 42, 55 |
12.
13.
骨髓间充质干细胞的研究进展 总被引:18,自引:0,他引:18
骨髓间充质干细胞是存在于骨髓中的具有高度自我更新能力和多向分化潜能的干细胞群体 ,具有支持造血、多向分化潜能以及在细胞和基因工程中具有潜在应用前景等特点 ,将在医学上具有重要的临床应用价值。 相似文献
14.
Ludovic Maertens Charlotte Erpicum Benoit Detry Silvia Blacher Bénédicte Lenoir Oriane Carnet Christel Péqueux Didier Cataldo Julie Lecomte Jenny Paupert Agnès Noel 《PloS one》2014,9(9)
It is now well accepted that multipotent Bone-Marrow Mesenchymal Stem Cells (BM-MSC) contribute to cancer progression through several mechanisms including angiogenesis. However, their involvement during the lymphangiogenic process is poorly described. Using BM-MSC isolated from mice of two different backgrounds, we demonstrate a paracrine lymphangiogenic action of BM-MSC both in vivo and in vitro. Co-injection of BM-MSC and tumor cells in mice increased the in vivo tumor growth and intratumoral lymphatic vessel density. In addition, BM-MSC or their conditioned medium stimulated the recruitment of lymphatic vessels in vivo in an ear sponge assay, and ex vivo in the lymphatic ring assay (LRA). In vitro, MSC conditioned medium also increased the proliferation rate and the migration of both primary lymphatic endothelial cells (LEC) and an immortalized lymphatic endothelial cell line. Mechanistically, these pro-lymphangiogenic effects relied on the secretion of Vascular Endothelial Growth Factor (VEGF)-A by BM-MSC that activates VEGF Receptor (VEGFR)-2 pathway on LEC. Indeed, the trapping of VEGF-A in MSC conditioned medium by soluble VEGF Receptors (sVEGFR)-1, -2 or the inhibition of VEGFR-2 activity by a specific inhibitor (ZM 323881) both decreased LEC proliferation, migration and the phosphorylation of their main downstream target ERK1/2. This study provides direct unprecedented evidence for a paracrine lymphangiogenic action of BM-MSC via the production of VEGF-A which acts on LEC VEGFR-2. 相似文献
15.
间充质干细胞具有向成骨细胞分化的潜能,可体外分离、培养和扩增,是骨组织工程中理想的种子细胞。近年的研究表明间充质干细胞的成骨分化受到多种信号通路的调控,现就其中研究较为深入的MAPK和Notch通路的情况作一简要综述。 相似文献
16.
Human Mesenchymal Stem Cells Signals Regulate Neural Stem Cell Fate 总被引:12,自引:0,他引:12
Neural stem cells (NSCs) differentiate into neurons, astrocytes and oligodendrocytes depending on their location within the
central nervous system (CNS). The cellular and molecular cues mediating end-stage cell fate choices are not completely understood.
The retention of multipotent NSCs in the adult CNS raises the possibility that selective recruitment of their progeny to specific
lineages may facilitate repair in a spectrum of neuropathological conditions. Previous studies suggest that adult human bone
marrow derived mesenchymal stem cells (hMSCs) improve functional outcome after a wide range of CNS insults, probably through
their trophic influence. In the context of such trophic activity, here we demonstrate that hMSCs in culture provide humoral
signals that selectively promote the genesis of neurons and oligodendrocytes from NSCs. Cell–cell contacts were less effective
and the proportion of hMSCs that could be induced to express neural characteristics was very small. We propose that the selective
promotion of neuronal and oligodendroglial fates in neural stem cell progeny is responsible for the ability of MSCs to enhance
recovery after a wide range of CNS injuries.
Special issue dedicated to Anthony Campagnoni. 相似文献
17.
18.
间充质干细胞是一类具有多向分化潜能的成体干细胞,在体内外不仅可以被诱导分化为中胚层细胞,而且可以分化为内胚层和神经外胚层细胞。间充质干细胞易分离,体外可大量扩增,异体移植不引起免疫排斥反应,在细胞治疗和组织工程中具有广阔的应用前景。经过适当诱导,间充质干细胞可能成为胰岛β细胞的来源之一。就间充质干细胞的生物学性状和优势,以及诱导分化为胰岛β细胞的技术方法和发展趋势进行了综述。 相似文献
19.
Iryna A. Isakova Calvin Lanclos Julie Bruhn Marcelo J. Kuroda Kate C. Baker Veena Krishnappa Donald G. Phinney 《PloS one》2014,9(1)
The emerging paradigm that MSCs are immune privileged has fostered the use of “off-the-shelf” allogeneic MSC-based therapies in human clinical trials. However, this approach ignores studies in experimental animals wherein transplantation of MSCs across MHC boundaries elicits measurable allo-immune responses. To determine if MSCs are hypo-immunogeneic, we characterized the immune response in rhesus macaques following intracranial administration of allogeneic vs. autologous MSCs. This analysis revealed unambiguous evidence of productive allo-recognition based on expansion of NK, B and T cell subsets in peripheral blood and detection of allo-specific antibodies in animals administered allogeneic but not autologous MSCs. Moreover, the degree of MHC class I and II mismatch between the MSC donor and recipient significantly influenced the magnitude and nature of the allo-immune response. Consistent with these findings, real-time PCR analysis of brain tissue from female recipients administered varying doses of male, allogeneic MSCs revealed a significant inverse correlation between MSC engraftment levels and cell dose. Changes in post-transplant neutrophil and lymphocyte counts also correlated with dose and were predictive of overall MSC engraftment levels. However, secondary antigen challenge failed to elicit a measurable immune response in allogeneic recipients. Finally, extensive behavior testing of animals revealed no main effect of cell dose on motor skills, social development, or temperament. Collectively, these data indicate that allogeneic MSCs are weakly immunogenic when transplanted across MHC boundaries in rhesus macaques and this negatively impacts durable engraftment levels. Therefore the use of unrelated donor MSCs should be carefully evaluated in human patients. 相似文献
20.
Seung Ah Choi Ji Yeoun Lee Sung Eun Kwon Kyu-Chang Wang Ji Hoon Phi Jung Won Choi Xiong Jin Ja Yun Lim Hyunggee Kim Seung-Ki Kim 《PloS one》2015,10(6)
In neuro-oncology, the biology of neural stem cells (NSCs) has been pursued in two ways: as tumor-initiating cells (TICs) and as a potential cell-based vehicle for gene therapy. NSCs as well as mesenchymal stem cells (MSCs) have been reported to possess tumor tropism capacities. However, there is little data on the migratory capacity of MSCs toward brain tumor-initiating cells (BTICs). This study focuses on the ability of human adipose tissue derived MSCs (hAT-MSCs) to target BTICs and their crosstalk in the microenvironment. BTICs were isolated from three different types of brain tumors. The migration capacities of hAT-MSCs toward BTICs were examined using an in vitro migration assay and in vivo bioluminescence imaging analysis. To investigate the crosstalk between hAT-MSCs and BTICs, we analyzed the mRNA expression patterns of cyto-chemokine receptors by RT-qPCR and the protein level of their ligands in co-cultured medium. The candidate cyto-chemokine receptors were selectively inhibited using siRNAs. Both in vitro and in vivo experiments showed that hAT-MSCs possess migratory abilities to target BTICs isolated from medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT) and glioblastoma. Different types of cyto-chemokines are involved in the crosstalk between hAT-MSCs and BTICs (medulloblastoma and AT/RT: CXCR4/SDF-1, CCR5/RANTES, IL6R/IL-6 and IL8R/IL8; glioblastoma: CXCR4/SDF-1, IL6R/IL-6, IL8R/IL-8 and IGF1R/IGF-1). Our findings demonstrated the migratory ability of hAT-MSCs for BTICs, implying the potential use of MSCs as a delivery vehicle for gene therapy. This study also confirmed the expression of hAT-MSCs cytokine receptors and the BTIC ligands that play roles in their crosstalk. 相似文献