首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Translational oncology》2020,13(2):329-335
BACKGROUND: KRAS gene mutations are well known as a key driver of advanced non–small cell lung cancer (NSCLC). The impact of KRAS-mutant subtypes on the survival benefit from salvage chemotherapy is controversial. Here, we present a real-world study in patients across China with advanced NSCLC with KRAS mutations using a website-based patient self-report system. METHODS: We identified a total of 75 patients diagnosed with KRAS-mutant (determined by molecular sequencing) advanced NSCLC between 2014/5/9 and 2019/5/30. KRAS mutation subtypes were divided into G12C and non-G12C groups for statistical analysis. The clinicopathological characteristics and treatment survival benefit in all patients with a KRAS mutation were evaluated. Programmed death-ligand 1 (PD-L1) expression data were collected from 30 patients in the same cohort. RESULTS: In this study, 23 patients with stage IIIB NSCLC and 52 patients with stage IV NSCLC were enrolled with 58 men and 17 women; the median age was 60 years (39–84). All patients received regular chemotherapy/radiotherapy/targeted therapy/immune therapy as per the disease condition. Four main KRAS mutation subtypes were detected: G12C (33%), G12V (19%), G12A (12%), and G12D (12%). Three predominant KRAS comutations were detected: TP53-KRAS (31%), EGFR-KRAS (11%), and STK11-KRAS (8%). Compared with the KRAS non-G12C mutation subtype, patients with the KRAS G12C mutation had potentially longer progression-free survival (PFS) after first-line chemotherapy (4.7 vs. 2.5 months, p < 0.05). Pemetrexed-based chemotherapy appeared to be superior to taxanes- and gemcitabine-based chemotherapies in all patients (PFS: 5.0 vs. 1.5 and 2.3 months, respectively, p > 0.05). Cox regression analysis showed that the KRAS G12C mutation and pemetrexed-based first-line chemotherapy were positive influencers for PFS after first-line (hazard ratios = 0.31 and 0.55, respectively, P < 0.05), but not second-line chemotherapies. CONCLUSION: The KRAS G12C mutation could be a predictive biomarker for better survival benefit from first-line chemotherapy in patients with advanced NSCLC and KRAS mutations. The first-line chemotherapy regimen could possibly influence the outcome in patients with KRAS mutations. Larger and prospective clinical trials are warranted to confirm our conclusions.  相似文献   

2.
Li M  Zhang Q  Fu P  Li P  Peng A  Zhang G  Song X  Tan M  Li X  Liu Y  Wu Y  Fan S  Wang C 《PloS one》2012,7(5):e37229
To compare the efficacy and toxicities of pemetrexed plus platinum with other platinum regimens in patients with previously untreated advanced non-small cell lung cancer (NSCLC). Methods: A meta-analysis was performed using trials identified through PubMed, EMBASE, and Cochrane databases. Two investigators independently assessed the quality of the trials and extracted data. The outcomes included overall survival (OS), progression-free survival (PFS), response rate (RR), and different types of toxicity. Hazard ratios (HRs), odds ratios (ORs) and their 95% confidence intervals (CIs) were pooled using RevMan software. Results: Four trials involving 2,518 patients with previously untreated advanced NSCLC met the inclusion criteria. Pemetrexed plus platinum chemotherapy (PPC) improved survival compared with other platinum-based regimens (PBR) in patients with advanced NSCLC (HR?=?0.91, 95% CI: 0.83-1.00, p?=?0.04), especially in those with non-squamous histology (HR?=?0.87, 95% CI: 0.77-0.98, p?=?0.02). No statistically significant improvement in either PFS or RR was found in PPC group as compared with PBR group (HR?=?1.03, 95% CI: 0.94-1.13, p?=?0.57; OR?=?1.15, 95% CI: 0.95-1.39, p?=?0.15, respectively). Compared with PBR, PPC led to less grade 3-4 neutropenia and leukopenia but more grade 3-4 nausea. However, hematological toxicity analysis revealed significant heterogeneities. CONCLUSION: Our results suggest that PPC in the first-line setting leads to a significant survival advantage with acceptable toxicities for advanced NSCLC patients, especially those with non-squamous histology, as compared with other PRB. PPC could be considered as the first-line treatment option for advanced NSCLC patients, especially those with non-squamous histology.  相似文献   

3.
PURPOSE: Patients with non-small cell lung cancer (NSCLC) and epidermal growth factor receptor (EGFR)-mutations have excellent response to EGFR tyrosine kinase inhibitors (TKIs), and exon 20 mutation accounts for most of TKI drug resistance. Nested polymerase chain reaction (PCR) was used to detect EGFR exon 20 mutations of patients with NSCLC after chemotherapy. The same is being analyzed with patients' characteristics. METHODS: Peripheral blood samples were collected from 273 patients with NSCLC, including 143 with adenocarcinoma (ADC) and 130 with squamous cell carcinoma (SCC), after chemotherapy. DNA was extracted from whole blood for nested PCR amplification and purification. Sequencing was carried out in an automated 3730 sequencer, followed by analysis of EGFR exon 20 mutations from nested PCR products. RESULTS: The mutations of EGFR exon 20 were mainly point mutations in rs1050171 (c.2361A>G) and rs56183713 (c.2457G>A). The point mutation was 28.21%, 28.46%, and 27.97% in patients with NSCLC, ADC and SCC, respectively. Men had an equivalent mutation (27.18%) to women (30.77%). The mutation in smokers and nonsmokers was 27.68% and 29.17%, respectively. In unselected patients, there was no correlation between EGFR exon 20 mutations and patients' characteristics of age, gender, smoking history, histologic type, or tumor-node-metastasis (TNM) staging system. In subgroup analyses, the EGFR mutation of patients with SCC was correlated with TNM stage [P = .013; odds ratio = 1.758; 95% confidence interval (CI) = 1.125-2.747]. CONCLUSIONS: The data indicate that the chemotherapy may induce EGFR-TKI-resistant mutation in NSCLC cells and EGFR-TKI should be used in the early stage of NSCLC but not after chemotherapy.  相似文献   

4.
BackgroundRadiology is the current standard for monitoring treatment responses in lung cancer. Limited sensitivity, exposure to ionizing radiations and related sequelae constitute some of its major limitation. Non-invasive and highly sensitive methods for early detection of treatment failures and resistance-associated disease progression would have additional clinical utility.MethodsWe analyzed serially collected plasma and paired tumor samples from lung cancer patients (61 with stage IV, 48 with stages I-III disease) and 61 healthy samples by means of next-generation sequencing, radiological imaging and droplet digital polymerase chain reaction (ddPCR) mutation and methylation assays.ResultsA 62% variant concordance between tumor-reported and circulating-free DNA (cfDNA) sequencing was observed between baseline liquid and tissue biopsies in stage IV patients. Interestingly, ctDNA sequencing allowed for the identification of resistance-mediating p.T790M mutations in baseline plasma samples for which no such mutation was observed in the corresponding tissue. Serial circulating tumor DNA (ctDNA) mutation analysis by means of ddPCR revealed a general decrease in ctDNA loads between baseline and first reassessment. Additionally, serial ctDNA analyses only recapitulated computed tomography (CT) -monitored tumor dynamics of some, but not all lesions within the same patient. To complement ctDNA variant analysis we devised a ctDNA methylation assay (methcfDNA) based on methylation-sensitive restriction enzymes. cfDNA methylation showed and area under the curve (AUC) of > 0.90 in early and late stage cases. A decrease in methcfDNA between baseline and first reassessment was reflected by a decrease in CT-derive tumor surface area, irrespective of tumor mutational status.ConclusionTaken together, our data support the use of cfDNA sequencing for unbiased characterization of the molecular tumor architecture, highlights the impact of tumor architectural heterogeneity on ctDNA-based tumor surveillance and the added value of complementary approaches such as cfDNA methylation for early detection and monitoring  相似文献   

5.

Introduction

Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea.

Methods

Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records.

Results

This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001). The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%), pulmonologists (31.9%), and thoracic surgeons (6.6%). EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma.

Conclusions

In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants the need for generalized testing in Asian NSCLC patients.  相似文献   

6.
KH-type splicing regulatory protein (KSRP) is a single-strand RNA binding protein which regulates mRNA stability either by binding to AU-rich elements (AREs) of mRNA 3′UTR or by facilitating miRNA biogenesis to target mRNA. Unlike its well-characterized function at the molecular level in maintaining RNA homeostasis, the role of KSRP in cancer progression remains largely unknown. Here we investigate the role of KSRP in non-small cell lung cancer (NSCLC). We first examined KSRP expression by immunohistochemistry in a cohort containing 196 NSCLC patients and observed a strong positive correlation between KSRP expression and survival of NSCLC patients. Multivariate analysis further identified KSRP as an independent prognostic factor. Manipulating KSRP expression significantly affected in vitro cell mobility and in vivo metastatic ability of NSCLC cells. Microarray analysis identified an ARE-containing gene, EGR3, as a downstream effector of KSRP in NSCLC. Interestingly, we found that KSRP decreased EGR3 mRNA stability in an ARE-independent manner. By screening KSRP-regulated miRNAs in NSCLC cells, we further found that miR-23a directly binds to EGR3 3′UTR, reducing EGR3 expression and thereby inhibiting NSCLC cell mobility. Our findings implicate a targetable KSRP/miR-23a/EGR3 signaling axis in advanced tumor phenotypes.  相似文献   

7.
Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14ARF and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively.  相似文献   

8.
Lung cancer and chronic obstructive pulmonary disease (COPD) are two major lung diseases. Epidermal growth factor receptor (EGFR) mutations, v‐Ki‐ras2 Kirsten rat sarcoma (KRAS) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements represent driver mutations that are frequently assessed on initial evaluation of non-small-cell lung cancer (NSCLC). The present study focused on the expression of driver mutations in NSCLC patients presenting with COPD and further evaluated the association between NSCLC and COPD. Data from 501 consecutive patients with histologically proven recurrent or metastatic NSCLC were analyzed retrospectively. The patients underwent spirometry and genotyping of EGFR, ALK, and KRAS in tissue samples. Patient characteristics and expression of driver mutations were compared between the COPD and non-COPD groups.Among 350 patients with spirometric results, 106 (30.3%) were diagnosed with COPD, 108 (30.9%) had EGFR mutations, 31 (8.9%) had KRAS mutations, and 34 (9.7%) showed ALK rearrangements. COPD was independently associated with lower prevalences of EGFR mutations (95% confidence interval [CI], 0.254–0.931, p = 0.029) and ALK rearrangements (95% CI, 0.065–0.600, p = 0.004). The proportions of EGFR mutations and ALK rearrangements decreased as the severity of airflow obstruction increased (p = 0.001). In never smokers, the prevalence of EGFR mutations was significantly lower in the COPD group than in the non-COPD group (12.7% vs. 49.0%, p = 0.002). COPD-related NSCLC patients exhibited low prevalences of EGFR mutations and ALK rearrangements compared with the non-COPD group. Further studies are required regarding the molecular mechanisms underlying lung cancer associated with COPD.  相似文献   

9.

Background

Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients.

Methods

We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome.

Results

Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse.

Conclusions

Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies.  相似文献   

10.
《Endocrine practice》2018,24(5):453-459
Objective: Circulating tumor DNA (ctDNA), a subset of cell-free DNA (cfDNA), is a potential biomarker for thyroid cancer. We determined the performance of a ctDNA panel for detecting thyroid malignancy in patients with thyroid nodules.Methods: Sixty-six patients with thyroid nodules without a prior history of cancer enrolled in a prospective, 1-year study in which blood was drawn for ctDNA analysis prior to undergoing fine-needle aspiration biopsy (FNAB) of thyroid nodules. The ctDNA panel consisted of 96-mutations in 9 cancer driver genes. The primary outcome measures were the sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of our ctDNA panel for the diagnosis of thyroid malignancy as determined by pathologic and/or molecular tissue examination.Results: Results from 10 subjects could not be determined due to inadequate volume or technical issues. The final classifications of the thyroid nodules were 13 malignant and 43 benign lesions. A KRAS G12V mutation was detected in the plasma of 1 patient with stage IVA papillary carcinoma whose tissue contained the same mutation. Two of the 43 patients with benign lesions also had ctDNA detected, giving a sensitivity of 7.7%, specificity of 95.35%, PPV of 33.33%, and NPV of 77.35%. There were no significant differences between benign or malignant lesions in cfDNA levels.Conclusion: Neither cfDNA measurements nor our panel of ctDNA mutations are sensitive or specific enough to provide valuable information over FNAB. An expanded panel and the inclusion of proteomics may improve sensitivity and specificity for thyroid cancer detection.Abbreviations: cfDNA = cell-free DNA; ctDNA = circulating tumor DNA; FNAB = fine-needle aspiration biopsy; NIFTP = noninvasive follicular thyroid neoplasm with papillary-like nuclear features  相似文献   

11.
Alterations of Eph receptor tyrosine kinases are frequent events in human cancers. Genetic variations of EPHB6 have been described but the functional outcome of these alterations is unknown. The current study was conducted to screen for the occurrence and to identify functional consequences of EPHB6 mutations in non-small cell lung cancer. Here, we sequenced the entire coding region of EPHB6 in 80 non-small cell lung cancer patients and 3 tumor cell lines. Three potentially relevant mutations were identified in primary patient samples of NSCLC patients (3.8%). Two point mutations led to instable proteins. An in frame deletion mutation (del915-917) showed enhanced migration and accelerated wound healing in vitro. Furthermore, the del915-917 mutation increased the metastatic capability of NSCLC cells in an in vivo mouse model. Our results suggest that EPHB6 mutations promote metastasis in a subset of patients with non-small cell lung cancer.  相似文献   

12.
《Translational oncology》2020,13(8):100787
We attempted to detect circulating tumor DNA (ctDNA), taking advantage of molecular barcode next-generation sequencing (MB-NGS), which can be more easily customized to detect a variety of mutations with a high sensitivity than PCR-based methods. Sequencing with a gene panel consisting of the 13 most frequently mutated genes in breast tumors from stage I or II patients revealed 95 somatic mutations in the 12 genes in 62% (62/100) of tumors. Then, plasma DNA from each patient (n = 62) before surgery was analyzed via MB-NGS customized to each somatic mutation, resulting in the detection of ctDNA in 16.1% (10/62) of patients. ctDNA was significantly associated with biologically aggressive phenotypes, including large tumor size (P = .004), positive lymph node (P = .009), high histological grade (P < .001), negative ER (P = .018), negative PR (P = .017), and positive HER2 (P = .046). Furthermore, distant disease-free survival was significantly worse in patients with ctDNA (n = 10) than those without ctDNA (n = 52) (P < .001). Our results demonstrate that MB-NGS personalized to each mutation can detect ctDNA with a high sensitivity in early breast cancer patients at diagnosis, and it seems to have a potential to serve as a clinically useful tumor marker for predicting their prognosis.  相似文献   

13.
Background and aimsCirculating tumor cells (CTCs) or circulating tumor DNA (ctDNA) may be used for diagnostic or prognostic purposes in patients with hepatocellular carcinoma (HCC). We aim to determine whether CTCs or ctDNA are suitable to determine oncogenic mutations in HCC patients.MethodsTwenty-six mostly advanced HCC patients were enrolled. 30 mL peripheral blood from each patient was obtained. CellSearch system was used for CTC detection. A sequencing panel covering 14 cancer-relevant genes was used to identify oncogenic mutations. TERT promoter C228T and C250T mutations were determined by droplet digital PCR.ResultsCTCs were detected in 27% (7/26) of subjects but at low numbers (median: 2 cells, range: 1–15 cells) and ctDNA in 77% (20/26) of patients. Mutations in ctDNA were identified in several genes: TERT promoter C228T (77%, 20/26), TP53 (23%, 6/26), CTNNB1 (12%, 3/26), PIK3CA (12%, 3/26) and NRAS (4%, 1/26). The TERT C228T mutation was present in all patients with one or more ctDNA mutations, or detectable CTCs. The TERT C228T and TP53 mutations detected in ctDNA were present at higher levels in matched primary HCC tumor tissue. The maximal variant allele frequency (VAF) of ctDNA was linearly correlated with largest tumor size and AFP level (Log10). CtDNA (or TERT C228T) positivity was associated with macrovascular invasion, and positivity of ctDNA (or TERT C228T) or CTCs (≥ 2) correlated with poor patient survival.ConclusionsOncogenic mutations could be detected in ctDNA from advanced HCC patients. CtDNA analysis may serve as a promising liquid biopsy to identify druggable mutations.  相似文献   

14.

Background

Combination of erlotinib and bevacizumab is a promising regimen in advanced non-squamous non-small-cell lung cancer (NSCLC). We are conducting a single arm phase II trial which aims to evaluate the efficacy and safety of this regime as a second- or third-line chemotherapy.

Methods

Key eligibility criteria were histologically or cytologically confirmed non-squamous NSCLC, stage III/IV or recurrent NSCLC not indicated radical chemoradiation, prior one or two regimen of chemotherapy, age 20 years or more, and performance status of two or less. The primary endpoint is objective response rate. The secondary endpoints include overall survival, progression-free survival, disease control rate and incidence of adverse events. This trial plans to accrue 80 patients based on a two-stage design employing a binomial distribution with an alternative hypothesis response rate of 35% and a null hypothesis threshold response rate of 20%. A subset analysis according to EGFR mutation status is planned.

Discussion

We have presented the design of a single arm phase II trial to evaluate the efficacy and safety of combination of bevacizumab and erlotinib in advanced non-squamous NSCLC patients. In particular we are interested in determining the merit of further development of this regimen and whether prospective patient selection using EGFR gene is necessary in future trials.

Trial registration

This trial was registered at the UMIN Clinical Trials Registry as UMIN000004255 (http://www.umin.ac.jp/ctr/index.htm).  相似文献   

15.
《Cytotherapy》2019,21(6):603-611
BackgroundTreatment with tyrosine kinase inhibitors (TKIs) has improved the outcomes for patients with non-small cell lung cancer (NSCLC) harboring targetable driver mutations. However, acquired resistance to TKIs invariably develops within approximately 1 year of treatment by various mechanisms, including gatekeeper mutations, alternative pathway activation and histological transformations. Because immunotherapy is an option for patients with drug-resistant cancers, we generated several TKI-resistant NSCLC cell lines in vitro, and then evaluated the cytotoxicity of NK92-CD16 cells to these resistant cells.Materials and MethodsTKI-resistant NSCLC cells (H3122CR1, H3122LR1, H3122CR1LR1, PC-9GR, PC-9ER, EBC-CR1 and EBC-CR2) were established from NCI-H3122 (EML4-ALK fusion), PC-9 (EGFR exon19 deletion) and EBC-1 (MET amplification) after continuous exposure to crizotinib, ceritinib, gefitinib, erlotinib and capmatinib. Expression of ligands for natural killer (NK) cell receptors and total EGFR were analyzed using flow cytometry. NK cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) using anti-EGFR monoclonal antibody (mAb) cetuximab were measured using NK92-CD16 as effectors and detected using the 51Chromium-release assay.ResultsWe found that NK92-CD16 cells preferentially killed TKI-resistant NSCLC cells when compared with their parental NSCLC cells. Mechanistically, intracellular adhesion molecule 1 (ICAM-1) was up-regulated in the TKI-resistant NSCLC cells and patients’ tumors, and the ICAM-1 up-regulated cancer cells lines were less susceptible to NK cytotoxicity by blocking ICAM-1. Moreover, NK92-CD16 cell-induced cytotoxicity toward TKI-resistant NSCLC cells was enhanced in the presence of cetuximab, an EGFR-targeting mAb.ConclusionThese data suggest that combinational treatment with NK cell–based immunotherapy and cetuximab may be promising for patients with TKI-resistant NSCLC.  相似文献   

16.
Non-small-cell lung cancer (NSCLC) is the primary cause of cancer-related death. Gene rearrangements involving the anaplastic lymphoma kinase (ALK) tyrosine kinase identify a clinical and molecular subset of NSCLC patients, who benefit from the monotherapy with ALK tyrosine kinase inhibitors. Nonetheless, responsiveness to TKIs and prognosis of these patients are influenced by several factors, including resistance mechanisms and mutations affecting genes involved in key molecular pathways of cancer cells. In a cohort of 98 NSCLC patients with ALK gene rearrangements, we investigated the role of Tumor Protein (TP53) gene mutations in predicting patients prognosis. TP53 mutations were evaluated in relation to disease control rate (DCR), objective response rate (ORR), progression-free survival (PFS) and overall survival (OS).Results: In patients with available clinical and TP53 mutation information, we found that 13 patients (20.3%) were affected by TP53 mutations. Considered together, even though showing a trend, TP53 mutations were not associated with PFS and OS. Considering the different TP53 mutations by functionality in terms of disruptive and non-disruptive mutations, we observed that TP53 non-disruptive mutations were able to predict worse OS in the overall case series. Moreover, a worse PFS was seen in the subgroup of patients with TP53 non-disruptive mutation, in first-, second-, and third line of treatment. Our results show that mutations affecting TP53 gene, especially non-disruptive mutations, are able to affect prognosis of ALK-rearranged NSCLC patients.  相似文献   

17.
EGFR基因在非小细胞肺癌、乳腺癌中突变的研究   总被引:3,自引:0,他引:3  
表皮生长因子受体(EGFR)基因酪氨酸激酶域体细胞突变与非小细胞肺癌(NSCLC)患者对酪氨酸激酶抑制剂吉非替尼敏感性密切相关。文章分析和检测本院75例非小细胞肺癌、10例乳腺癌患者石蜡包埋标本EGFR基因突变状况。采用PCR技术进行EGFR基因19和21外显子突变分析。结果显示:75例NSCLC患者中有13例(13/75,17.33%)酪氨酸激酶域存在体细胞突变。其中7例(7/75,9.33%)为19外显子缺失突变,6例(6/75,8%)为21外显子替代突变(2573T>G,L858R)。病理分型显示,腺癌突变率高于其他几种类型NSCLC。乳腺癌患者均为免疫组化HER-2阳性女性,EGFR基因的19、21外显子中未见突变发生。中国非小细胞肺癌患者总突变率高于高加索人种,女性患者较男性患者突变率高,提示肺腺癌的患者突变率高可能在吉非替尼的治疗中获益。  相似文献   

18.
ALK-break positive non-small cell lung cancer (NSCLC) patients initially respond to crizotinib, but resistance occurs inevitably. In this study we aimed to identify fusion genes in crizotinib resistant tumor samples. Re-biopsies of three patients were subjected to paired-end RNA sequencing to identify fusion genes using deFuse and EricScript. The IGV browser was used to determine presence of known resistance-associated mutations. Sanger sequencing was used to validate fusion genes and digital droplet PCR to validate mutations. ALK fusion genes were detected in all three patients with EML4 being the fusion partner. One patient had no additional fusion genes. Another patient had one additional fusion gene, but without a predicted open reading frame (ORF). The third patient had three additional fusion genes, of which two were derived from the same chromosomal region as the EML4-ALK. A predicted ORF was identified only in the CLIP4-VSNL1 fusion product. The fusion genes validated in the post-treatment sample were also present in the biopsy before crizotinib. ALK mutations (p.C1156Y and p.G1269A) detected in the re-biopsies of two patients, were not detected in pre-treatment biopsies. In conclusion, fusion genes identified in our study are unlikely to be involved in crizotinib resistance based on presence in pre-treatment biopsies. The detection of ALK mutations in post-treatment tumor samples of two patients underlines their role in crizotinib resistance.  相似文献   

19.
To investigate whether the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene polymorphisms determine the Platinum-based chemotherapy in advanced non-small cell lung cancer (NSCLC) in a Chinese cohort. A total of 391 patients with inoperable advanced stage of NSCLC, namely, stage III (A + B) and IV NSCLC, and 663 age-and sex-matched healthy were enrolled. The effects of chemotherapy were evaluated. NQO1 C609T polymorphism was determined. The NSCLC patients had a significantly higher prevalence of TT than control subjects (33.76 vs. 21.67 %, P < 0.001). For allele comparison, NSCLC subjects had lower T allele frequency than controls as well (55.63 vs. 44.42 %, P < 0.001). multivariate regression analyses showed the TT carriage had a significantly increased risk for development of NSCLC after adjustments with age, sex, smoke, and cancer family history (OR 1.681, 95 % CI 1.242–2.274, P = 0.001). The TT genotype distribution was significantly higher in non-responders than in responders (31.85 vs. 21.96 %, P = 0.003). Logistic regression analysis showed TT genotype carriers had less chance to gain chemotherapy response compared to CC genotype carriers (OR 0.399, P = 0.003) after adjustment with sex, age, tumor histology, disease stage, and chemotherapy regimens. The NQO1 C609T polymorphism is an important molecular marker for advanced NSCLC, since it is associated with the NSCLC risk as well as the response status of platinum-based chemotherapy.  相似文献   

20.
《Translational oncology》2021,14(11):101191
Our current treatment paradigm of advanced anaplastic lymphoma kinase fusion (ALK+) non-small cell lung cancer (NSCLC) classifies the six currently approved ALK tyrosine kinase inhibitors (TKIs) into three generations. The 2nd-generation (2G) and 3rd-generation (3G) ALK TKIs are all “single mutant active” with varying potencies across a wide spectrum of acquired single ALK resistance mutations. There is a vigorous debate among clinicians which is the best upfront ALK TKI is for the first-line (1L) treatment of ALK+ NSCLC and the subsequent sequencing strategies whether it should be based on the presence of specific on-target ALK resistance mutations or not. Regardless, sequential use of “single mutant active” ALK TKIs will eventually lead to double ALK resistance mutations in cis. This has led to the creation of fourth generation (4G) “double mutant active” ALK TKIs such as TPX-0131 and NVL-655. We discuss the critical properties 4G ALK TKIs must possess to be clinically successful. We proposed conceptual first-line, second-line, and molecularly-based third-line registrational randomized clinical trials designed for these 4G ALK TKIs. How these 4G ALK TKIs would be used in the future will depend on which line of treatment the clinical trial design(s) is adopted provided the trial is positive. If approved, 4G ALK TKIs may usher in a new treatment paradigm for advanced ALK+ NSCLC that is based on classifying ALK TKIs based on the intrinsic functional capabilities (“singe mutant active” versus “double mutant active”) rather than the loosely-defined “generational” (first-, second-,third-,fourth-) classification and avoid the current clinical approaches of seemingly random sequential use of 2G and 3G ALK TKIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号