首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The taxonomy, geographic distribution, and paleoenvironmental context of azhdarchid pterosaurs are reviewed. All purported pteranodontid, tapejarid, and azhdarchid specimens from the Cenomanian Kem Kem beds of Morocco are referred to a single azhdarchid taxon, Alanqa saharica. The four proposed autapomorphies of Eurazhdarcho langendorfensis from the lower Maastrichtian Sebeş Formation of Romania are based on misinterpretations of material and this taxon is likely a subjective junior synonym of Hatzegopteryx thambema. Among 54 currently reported azhdarchid occurrences (51 skeletal remains and 3 tracks) 13% are from lacustrine deposits, 17% from fluvial plain deposits, 17% from coastal plain deposits, 18% from estuarine and lagoonal deposits, and 35% from costal marine deposits. Azhdarchids likely inhabited a variety of environments, but were abundant near large lakes and rivers and most common in nearshore marine paleoenvironments.  相似文献   

2.
3.
New pterosaur remains consisting of jaw fragments of toothless taxa and isolated teeth are described from the red beds of the Kern Kern region of southern Morocco. The stratigraphic position of those red beds is discussed and it is concluded that they are in all likelihood early Cenomanian in age. At least four taxa of pterodactyloid pterosaurs are present. The toothless jaw fragments are referred to the families ?Pteranodontidae, ?Azhdarchidae and Tapejaridae. Four different morphotypes can be distinguished among the isolated teeth. They are tentatively referred to the Ornithocheiridae. This assemblage reveals a high diversity of pterosaurs in Africa during the early Upper Cretaceous. The possible occurrence of tapejarids and anhanguerids indicates relationships with the somewhat older pterosaur assemblage from the Santana Formation (Aptian/Albian) of Brazil. If confirmed, the presence of azhdarchids and pteranodontids in the early Cenomanian suggests an early differentiation of these essentially late Late Cretaceous groups of large pterosaurs.  相似文献   

4.
Thirty-seven well-preserved, isolated theropod teeth from the Early Cenomanian Kem Kem beds, Morocco, are identified by using morphometric data and direct comparison with teeth previously described in the literature. Direct comparison reveals that four different morphotypes (MT 1–4) are present in the sample. The teeth of MT 1 are characterised by unserrated carinae and belong to spinosaurid dinosaurs. The teeth of MT 2–4 have serrated carinae, and our data analysis indicates they are of carcharodontosaurid, dromaeosaurid, and abelisaurid origin. Three types of crown enamel ornamentation are present among the teeth of MT 1, which implies that, apart from Spinosaurus aegyptiacus STROMER 1915, more than one species of spinosaurine theropods may be present in the Early Cenomanian of Northern Africa. Our results also confirm the occurrence of abelisaurids, dromaeosaurids, and carcharodontosaurids in Morocco.  相似文献   

5.
Two isolated trunk vertebrae from the ?uppermost Albian–lower Cenomanian Kem Kem beds of Morocco are described and assigned to Lapparentophis, an early snake genus known from coeval deposits in Algeria. The Moroccan specimens represent a new species, Lapparentophis ragei, which can be distinguished from the type and only known species, Lapparentophis defrennei, by its smaller size, its more elongate vertebrae, the presence of parazygosphenal foramina, and paradiapophyses extending anteroventrally closer to the cotyle. The discovery of Lapparentophis in the Kem Kem beds adds to the relatively diverse snake assemblage previously reported from this formation and extends the geographical range of the genus. The distribution of Lapparentophis and lapparentophiid-grade (?lapparentophiid) snakes is discussed. This poorly known family of terrestrial snakes seems to be restricted to the latest Albian–early Cenomanian of North Africa, with the exception of Pouitella from the early–middle Cenomanian of France. As for many other vertebrate taxa of this period, this distribution is consistent with a dispersal event from Africa to the western part of the European archipelago.  相似文献   

6.
?si, A. 2011: Feeding‐related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet. Lethaia, Vol. 44, pp. 136–152. A comparative study of various feeding‐related features in basal pterosaurs reveals a significant change in feeding strategies during the early evolutionary history of the group. These features are related to the skull architecture (e.g. quadrate morphology and orientation, jaw joint), dentition (e.g. crown morphology, wear patterns), reconstructed adductor musculature and post‐cranium. The most basal pterosaurs (Preondactylus, dimorphodontids and anurognathids) were small‐bodied animals with a wingspan no greater than 1.5 m, a relatively short, lightly constructed skull, straight mandibles with a large gape, sharply pointed teeth and well‐developed external adductors. The absence of extended tooth wear excludes complex oral food processing and indicates that jaw closure was simply orthal. Features of these basal‐most forms indicate a predominantly insectivorous diet. Among stratigraphically older but more derived forms (Eudimorphodon, Carniadactylus, Caviramus) complex, multicuspid teeth allowed the consumption of a wider variety of prey via a more effective form of food processing. This is supported by heavy dental wear in all forms with multicuspid teeth. Typical piscivorous forms occurred no earlier than the Early Jurassic, and are characterized by widely spaced, enlarged procumbent teeth forming a fish grab and an anteriorly inclined quadrate that permitted only a relatively small gape. In addition, the skull became more elongate and body size increased. Besides the dominance of piscivory, dental morphology and the scarcity of tooth wear reflect accidental dental occlusion that could have been caused by the capturing or seasonal consumption of harder food items. □Basal pterosaurs, heterodonty, dental wear, insectivory, piscivory.  相似文献   

7.
The extent to which elements of functional systems can change independently (modularity) likely influences the diversification of lineages. Major innovations in organismal design, like the pharyngeal jaw in cichlid fishes, may be key to a group's success when they relax constraints on diversification by increasing phenotypic modularity. In cichlid fishes, pharyngeal jaw modifications that enhanced the ability to breakdown prey may have freed their oral jaws from serving their ancestral dual role as a site of both prey capture and prey processing. This functional decoupling that allowed the oral jaws to become devoted solely to prey capture has been hypothesized to have permitted the two sets of cichlid jaws to evolve independently. We tested the hypothesis that oral and pharyngeal jaw mechanics are evolutionarily decoupled both within and among Neotropical Heroine cichlids. In the trophically polymorphic species Herichthys minckleyi, molariforms that exhibit enlarged molarlike pharyngeal jaw teeth were found to have approximately 400% greater lower jaw mass compared to H. minckleyi with the alternative papilliform pharyngeal morphology. However, oral jaw gape, lower jaw velocity ratios, anterior jaw linkage mechanics, and jaw protrusion did not differ between the morphotypes. In 40 other Heroine species, there was a weak correlation between oral jaw mechanics and pharyngeal jaw mass when phylogenetic history was ignored. Yet, after expansion of the cytochrome b phylogeny for Heroines, change in oral jaw mechanics was found to be independent of evolutionary change in pharyngeal jaw mass based on independent contrasts. Evolutionary decoupling of oral and pharyngeal jaw mechanics has likely played a critical role in the unparalleled trophic diversification of cichlid fishes.  相似文献   

8.
Several flatfish species exhibit the unusual feature of bilateral asymmetry in prey capture kinematics. One species, Pleuronichthys verticalis, produces lateral flexion of the jaws during prey capture. This raises two questions: 1) How are asymmetrical movements generated, and 2) How could this unusual jaw mechanism have evolved? In this study, specimens were dissected to determine which cephalic structures might produce asymmetrical jaw movements, hypotheses were formulated about the specific function of these structures, physical models were built to test these hypotheses, and models were compared with prey capture kinematics to assess their accuracy. The results suggest that when the neurocranium rotates dorsally the premaxillae slide off the smooth, rounded surface of the vomer (which is angled toward the blind, or eyeless, side) and are “launched” anteriorly and laterally. The bilaterally asymmetrical trajectory of the upper jaw is determined by the orientation of the “launch pad,” the vomer. During lower jaw depression, the mandibles rotate about their articulations with the quadrate bones of the suspensoria. The quadrato‐mandibular joint is positioned farther anteriorly on the eye side than on the blind side, and this asymmetry deflects the lower jaw toward the blind side. Asymmetry in the articular surfaces of the lower jaw augments this effect. Thus, it appears that fish with intermediate forms of this asymmetrical movement could have evolved from symmetrical ancestors via a few key morphological changes. In addition, similar morphological modifications have been observed in other fish taxa that also produce jaw flexion during feeding, which suggests that there may be convergence in the basic mechanism of asymmetry. J. Morphol. 256:1–12, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

9.
10.
The head and jaw movements involved in capture, buccal manipulation, ingestion and rejection of prey were investigated using sequential photography of juvenile Atlantic salmon feeding in a simulated stream environment. The results are described and discussed and mouth breadth and gill raker spacing are proposed as morphometric limitations to the range of prey sizes available which remains constant at 0·06 · fish fork length ( PFR ).
A recirculatory flume tank was used to study prey size selectivity behavior. Simplified downstream-drifting prey items elicited a variety of responses depending on their physical size. One hundred percent of offered prey of PFR 0·025 were ingested, while 90 % of prey at PFR 0·051 and 100% of prey at PFR 0·105 were rejected. It is demonstrated that fish show negative selection for prey sizes smaller than PFR 0·025 and that prey of this size elicits maximum growth response.
The validity of the proposed morphometric limitations on the available prey sizes is demonstrated by reference to selectivity behaviour and prey size related differential growth.  相似文献   

11.
Cranial kinesis in sparrows refers to the rotation of the upper jaw around its kinetic joint with the braincase. Avian jaw mechanics may involve the coupled motions of upper and lower jaws, in which the postorbital ligament transfers forces from the lower jaw, through the quadrate, pterygoid, and jugal bones, to the upper jaw. Alternatively, jaw motions may be uncoupled, with the upper jaw moving independently of the lower jaw. We tested hypotheses of cranial kinesis through the use of quantitative computer models. We present a biomechanical model of avian jaw kinetics that predicts the motions of the jaws under assumptions of both a coupled and an uncoupled mechanism. In addition, the model predicts jaw motions under conditions of force transfer by either the jugal or the pterygoid bones. Thus four alternative models may be tested using the proposed model (coupled jugal, coupled pterygoid, uncoupled jugal, uncoupled pterygoid). All models are based on the mechanics of four-bar linkages and lever systems and use morphometric data on cranial structure as the basis for predicting cranial movements. Predictions of cranial motions are tested by comparison to kinematics of white-throated sparrows (Zonotrichia albicollis) during singing. The predicted relations between jaw motions for the coupled model are significantly different from video observations. We conclude that the upper and lower jaws are not coupled in white-throated sparrows. The range of jaw motions during song is consistent with a model in which independent contractions of upper and lower jaw muscles control beak motion. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The view of spinosaurs as dinosaurs of semi-aquatic habits and strongly associated with marginal and coastal habitats are deeply rooted in both scientific and popular knowledge, but it was never statistically tested. Inspired by a previous analysis of other dinosaur clades and major paleoenvironmental categories, here we present our own statistical evaluation of the association between coastal and terrestrial paleoenvironments and spinosaurids, along with other two theropod taxa: abelisaurids and carcharodontosaurids. We also included a taphonomic perspective and classified the occurrences in categories related to potential biases in order to better address our interpretations. Our main results can be summarized as follows: 1) the taxon with the largest amount of statistical evidence showing it positively associated to coastal paleoenvironments is Spinosauridae; 2) abelisaurids and carcharodontosaurids had more statistical evidence showing them positively associated with terrestrial paleoenvironments; 3) it is likely that spinosaurids also occupied spatially inland areas in a way somehow comparable at least to carcharodontosaurids; 4) abelisaurids may have been more common than the other two taxa in inland habitats.  相似文献   

13.
Crocodyliforms were one of the most successful groups of Mesozoic tetrapods, radiating into terrestrial, semiaquatic and marine environments, while occupying numerous trophic niches, including carnivorous, insectivorous, herbivorous, and piscivorous species. Among these taxa were the enigmatic, poorly represented flat-headed crocodyliforms from the late Cretaceous of northern Africa. Here we report a new, giant crocodyliform from the early Late Cretaceous (Cenomanian) Kem Kem Formation of Morocco. Represented by a partial braincase, the taxon has an extremely long, flat skull with large jaw and craniocervical muscles. The skull roof is ridged and ornamented with a broad, rough boss surrounded by significant vascular impressions, likely forming an integumentary structure unique among crocodyliforms. Size estimates using endocranial volume indicate the specimen was very large. The taxon possesses robust laterosphenoids with laterally oriented capitate processes and isolated epipterygoids, features allying it with derived eusuchians. Phylogenetic analysis finds the taxon to be a derived eusuchian and sister taxon to Aegyptosuchus, a poorly understood, early Late Cretaceous taxon from the Bahariya formation. This clade forms the sister clade of crown-group Crocodylia, making these taxa the earliest eusuchian crocodyliforms known from Africa. These results shift phylogenetic and biogeographical hypotheses on the origin of modern crocodylians towards the circum-Tethyean region and provide important new data on eusuchian morphology and evolution.  相似文献   

14.
Most snakes ingest and transport their prey via a jaw ratchetingmechanism in which the left and right upper jaw arches are advancedover the prey in an alternating, unilateral fashion. This unilateraljaw ratcheting mechanism differs greatly from the hyolingualand inertial transport mechanisms used by lizards, both of whichare characterized by bilaterally synchronous jaw movements.Given the well-corroborated phylogenetic hypothesis that snakesare derived from lizards, this suggests that major changes occurredin both the morphology and motor control of the feeding apparatusduring the early evolution of snakes. However, most previousstudies of the evolution of unilateral feeding mechanisms insnakes have focused almost exclusively on the morphology ofthe jaw apparatus because there have been very few direct observationsof feeding behavior in basal snakes. In this paper I describethe prey transport mechanisms used by representatives of twofamilies of basal snakes, Leptotyphlopidae and Typhlopidae.In Leptotyphlopidae, a mandibular raking mechanism is used,in which bilaterally synchronous flexions of the lower jaw serveto ratchet prey into and through the mouth. In Typhlopidae,a maxillary raking mechanism is used, in which asynchronousratcheting movements of the highly mobile upper jaws are usedto drag prey through the oral cavity. These findings suggestthat the unilateral feeding mechanisms that characterize themajority of living snakes were not present primitively in Serpentes,but arose subsequently to the basal divergence between Scolecophidiaand Alethinophidia.  相似文献   

15.
16.
Mammalian molluscivores feed mainly by shell-crushing or suction-feeding. The extinct marine arctoid, Kolponomos, has been interpreted as an otter-like shell-crusher based on similar dentitions. However, neither the masticatory biomechanics of the shell-crushing adaptation nor the way Kolponomos may have captured hard-shelled prey have been tested. Based on mandibular symphyseal morphology shared by Kolponomos and sabre-toothed carnivores, we hypothesize a sabretooth-like mechanism for Kolponomos prey-capture, whereby the mandible functioned as an anchor. Torque generated from jaw closure and head flexion was used to dislodge prey by prying, with prey then crushed using cheek teeth. We test this hypothesized feeding sequence using phylogenetically informed biomechanical simulations and shape analyses, and find a strongly supported, shared high mandibular stiffness in simulated prey-capture bites and mandibular shape in Kolponomos and the sabre-toothed cat Smilodon. These two distantly related taxa converged on using mandibles to anchor cranial torqueing forces when prying substrate-bound prey in the former and sabre-driving forces during prey-killing in the latter. Simulated prey-crushing bites indicate that Kolponomos and sea otters exhibit alternative structural stiffness-bite efficiency combinations in mandibular biomechanical adaptation for shell-crushing. This unique feeding system of Kolponomos exemplifies a mosaic of form-function convergence relative to other Carnivora.  相似文献   

17.
18.
The development of the jaw joint between the palatoquadrate and proximal part Meckel's cartilage (articular) has recently been shown to involve the gene Bapx1. Bapx1 is expressed in the developing mandibular arch in two distinct caudal, proximal patches, one on either side of the head. These domains coincide later with the position of the developing jaw joint. The mechanisms that result in the restricted expression of Bapx1 in the mandibular arch were investigated, and two signaling factors that act as repressors were identified. Fibroblast growth factors (Fgfs) expressed in the oral epithelium restrict expression of Bapx1 to the caudal half of the mandibular arch, while bone morphogenetic proteins (Bmps) expressed in the distal mandibular arch restrict expression of Bapx1 to the proximal part of the mandible. Application of Fgf8 and Bmp4 beads to the proximal mesenchyme led to loss of Bapx1 expression and later fusion of the quadrate and articular as the jaw joint failed to form. In addition to fusion of the jaw joint, loss of Bapx1 lead to loss of the retroarticular process (RAP), phenocopying the defects seen after Bapx1 function was reduced in the zebrafish. By manipulating these signals, we were able to alter the expression domain of Bapx1, resulting in a new position of the jaw joint.  相似文献   

19.
Biomechanical models of feeding mechanisms elucidate how animals capture food in the wild, which, in turn, expands our understanding of their fundamental trophic niche. However, little attention has been given to modeling the protrusible upper jaw apparatus that characterizes many teleost species. We expanded existing biomechanical models to include upper jaw forces using a generalist butterflyfish, Chaetodon trichrous (Chaetodontidae) that produces substantial upper jaw protrusion when feeding on midwater and benthic prey. Laboratory feeding trials for C. trichrous were recorded using high-speed digital imaging; from these sequences we quantified feeding performance parameters to use as inputs for the biomechanical model. According to the model outputs, the upper jaw makes a substantial contribution to the overall forces produced during mouth closing in C. trichrous. Thus, biomechanical models that only consider lower jaw closing forces will underestimate total bite force for this and likely other teleost species. We also quantified and subsequently modeled feeding events for C. trichrous consuming prey from the water column versus picking attached prey from the substrate to investigate whether there is a functional trade-off between prey capture modes. We found that individuals of C. trichrous alter their feeding behavior when consuming different prey types by changing the timing and magnitude of upper and lower jaw movements and that this behavioral modification will affect the forces produced by the jaws during prey capture by dynamically altering the lever mechanics of the jaws. In fact, the slower, lower magnitude movements produced during picking-based prey capture should produce a more forceful bite, which will facilitate feeding on benthic attached prey items, such as corals. Similarities between butterflyfishes and other teleost lineages that also employ picking-based prey capture suggest that a suite of key behavioral and morphological innovations enhances feeding success for benthic attached prey items.  相似文献   

20.
The feeding mechanism of gars (Ginglymodi : Lepisosteidae) is characterized by cranial elevation and lower jaw rotation but minimal cranial kinesis. Gar jaws have numerous, sharply pointed, elongate teeth for capture of evasive prey. Their mandibles range from relatively short to extremely long depending on the species. Jaw length and lever dimensions were hypothesized to affect the biomechanics of force and motion during feeding, according to simple mechanical models of muscles exerting force through first- or third-order levers. A morphometric protocol was used to measure the jaw structure of seven living and five fossil species of gar and these data were used to calculate the mechanical advantage (a measure of force transmission) for both opening and closing of the mandible. Gars were found to possess low mechanical advantage (MA) and high transmission of motion, although gars occupy a range of biomechanical states across the continuum of force vs. velocity transmission. The long-nose gar, Lepisosteus osseus, has one of the lowest jaw closing MAs (0.05) ever measured in fishes. Intraspecific lever mechanics were also calculated for a developmental series (from feeding larvae to adults) of L. osseus and Atractosteus spatula. A characteristic ontogenetic curve in MA of the lower jaw was obtained, with a large decrease in MA between larva and juvenile, followed by a steady increase during adult growth. This curve correlates with a change in prey type, with the small, robust-jawed individuals feeding mainly on crustaceans and insects and the large, long-jawed individuals of all species becoming mainly piscivorous. Principal components analysis of functionally important morphometrics shows that several gar species occupy different regions of functional morphospace. Some fossil gar species are also placed within functional morphospace using this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号