首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exosporium and Spore Coat Formation in Bacillus cereus T   总被引:8,自引:3,他引:5       下载免费PDF全文
The exosporium of Bacillus cereus T was first observed as a small lamella in the cytoplasm in proximity to the outer forespore membrane (OFSM) near the middle of the sporangium. Serial sections, various staining methods, and enzyme treatments failed to show any connections between the small lamella and the OFSM. The advancing edge of the exosporium moved toward the polar end of the cell until the spore was completely enveloped. The middle coat was formed between the exosporium and the OFSM from a three-layered single plate or "belt," consisting of two electron-dense layers separated by an electron-transparent layer. This "belt," usually first observed toward the center of the sporangium, developed without changing thickness or appearance over the surface of the forespore. Between the middle coat and the OFSM, a layer of cytoplasm about 50-nm thick was enclosed by the developing coat; this became the inner coat. Electron-dense material was deposited on the outer surface of the middle coat to form the outer coat.  相似文献   

2.
Chemical Composition of Exosporium from Spores of Bacillus cereus   总被引:12,自引:9,他引:3       下载免费PDF全文
Homogeneous fragments of exosporium were extricated in centigram amounts from dormant spores of Bacillus cereus and analyzed for intrinsic constituents. The membrane proved to be chemically complex but not unique, consisting mainly of protein (52%), amino and neutral polysaccharides (20%), lipids (18%), and ash (4%). Seventeen common amino acids were identified by chromatography, and were present in usual proportions except for low levels of cystine-cysteine, methionine, tyrosine, and histidine. Glucosamine was the only amino sugar, and glucose and rhamnose were the principal neutral sugars. The lipid fraction contained 5.5% cardiolipin as the only phospholipid, 12.5% neutral lipids, and at least 19 fatty acids, among which normal C(16) and C(18) ones predominated. Calcium and phosphorus occurred in the ash. Small amounts of teichoic, ribonucleic, and dipicolinic acids were believed to represent contamination.  相似文献   

3.
The optimum temperature for sporulation of a strain of Bacillus cereus was estimated at 30°–35°C, where the maximum yield of spores was obtained between 18 and 24 hours’ incubation. Sporulation was more rapid, but less extensive at 40°C and did not occur at all at 45°C. The heat resistance of the spores increased with the sporulation temperature from 20° to 40°C. The spores appear to be more susceptible to heat destruction in the early stage of spore production than after further incubation.  相似文献   

4.
Spores of selected strains of Bacillus megaterium were prepared by various methods and examined with the electron microscope. An exosporium like that of B. cereus, with a nap and basal layer, was found in spores of a B. megaterium strain that reportedly contains a capsule-like exosporium. The exosporium occasionally appeared to be doubled or have an apical opening. Pili-like filaments were discerned on the surface. Beneath the exosporium were found large deposits of planar inclusions, which in cross section appeared laminated and in surface views consisted of a patchwork of striated packets with a periodicity of approximately 5 nm. The inclusions were usually attached to the exosporium, but in ultrastructure they differed from both the exosporium and coat. In two other strains of B. megaterium, one or two coats occurred but a typical exosporium was not present.  相似文献   

5.
6.
The structure of DNA extracted from dormant and germinating spores of B. cereus T was investigated using circular dichroism and other methods. No significant differences between DNAs extracted from vegetative cells and from spores of various stages could be found by analyses of CD spectra, CsCl density gradient centrifugation, melting profiles and template activity. All the DNA preparations were in B conformation and had the same density (1.695), Tm (83°C) and template activity in the reaction of DNA-dependent RNA polymerase. An abnormal DNA fraction of high density which was formerly found in B. cereus spores or a stable DNA complex with protein and/or RNA was not detected in the present extracts of spores. Preliminary X-ray analyses of intact spores indicate that the structure of DNA in spores is not so different from B form.  相似文献   

7.
Sporulation of a Cortexless Mutant of a Variant of Bacillus cereus   总被引:8,自引:9,他引:8       下载免费PDF全文
A stage 4 sporulation mutant of a strain of Bacillus cereus var. alesti fails to synthesize a cortex although all other structural components appear normal. With terminal lysis the spore core as well as the sporangium is lysed. Both the uptake of (45)Ca and the synthesis of dipicolinic acid (DPA) are similar to these activities in the parent strain, but these components (DPA and Ca) are lost to the medium with the drastic lysis. The first stage of diaminopimelic acid incorporation, that into germ cell wall mucopeptide, is intact in the mutant; the second stage, that into cortical mucopeptide, is absent. These biochemical studies as well as phospholipid metabolism and freeze-etch analysis suggest the lesion lies in the outer forespore membrane.  相似文献   

8.
Cytochrome Pigments in Spores of Bacillus cereus T   总被引:1,自引:1,他引:0       下载免费PDF全文
Absorption spectra of dormant spores of Bacillus cereus T suspended in glycerol showed peaks characteristic of cytochrome pigments.  相似文献   

9.
Lipid Composition of Bacillus cereus During Growth and Sporulation   总被引:8,自引:5,他引:3       下载免费PDF全文
The lipid composition of Bacillus cereus during growth and sporulation was examined. The total lipid extract accounted for 2 to 3% of the dry weight of the cells and consisted of neutral lipids (30 to 40%) and phospholipids (60 to 70%). Phospholipids were separated by thin-layer chromatography into eight components; phosphatidyl ethanolamine, phosphatidyl glycerol, and diphosphatidyl glycerol were the major phospholipids and accounted for over 90% of the total. Also identified was a diglycosyl diglyceride and an alanine ester of phosphatidyl glycerol. Diphosphatidyl glycerol was more difficult to extract than the other components in vegetative and stationary-phase cells, but became increasingly easy to extract during spore maturation, and during sporulation cellular levels increased. Phosphatidyl glycerol had a high turnover rate; it accounted for about 70% of the phospholipid synthesis throughout sporulation but only represented between 30 and 40% of the total phospholipid at any time. Phosphatidyl ethanolamine, on the other hand, accounted for about 20% of the synthesis but was the major phospholipid (50 to 60% of the total).  相似文献   

10.
Concentrations of manganese, considerably in excess of the quantity required for normal vegetative growth, are needed by Bacillus for (i) synthesis of such secondary metabolites and structures as antibiotics, D-glutamyl peptide, endospores, bacteriophage, and protective antigen; and (ii) longevity of vegetative cell cultures. No other biologically active element can substitute for manganese, and no secondary biosynthetic process of Bacillus has been found in which the requirement for manganese is absent. In the present study, manganese could induce sporulation of B. megaterium even when added to synthetic broth cultures as late as 100 hr after inoculation. When sub-bactericidal concentrations of various biologically active trace elements were supplied within 2 hr of manganese addition, suppression of spore formation occurred in cultures exposed to elements of group VI (chromium, molybdenum, tungsten, selenium, tellurium) and one of group VIII (nickel); of the six interfering elements, selenium and nickel were most potent.  相似文献   

11.
Bacillus megaterium cells have been examined during outgrowth for their macromolecular content, ability to undergo microcycle sporulation, the time of their growth division, the time of deoxyribonucleic acid (DNA) replication initiation, and their ability to synthesize DNA after transfer to sporulation medium. The increase in total DNA content of the cells increased discontinuously beginning at 90 min. Thymidine incorporation became insensitive to chloramphenicol between 90 and 105 min of outgrowth. At 90 min the cells acquired the ability to undergo microcycle sporulation and the degree of sporulation depended on the time spent in outgrowth, with maximal sporulation occurring at 180 min. During outgrowth, cells underwent one synchronous growth division beginning at 225 min and ending at 270 min. Outgrowing cells were not able to continue DNA synthesis after transfer to sporulation medium. The data suggest that DNA replication starts before cells are able to undergo microcycle sporulation; however, the initiation of replication may not be the only requirement for microcycle sporulation.  相似文献   

12.
13.
Control of microorganisms such as Bacillus cereus spores is critical to ensure the safety and a long shelf life of foods. A bifunctional single chain antibody has been developed for detection and binding of B. cereus T spores. The genes that encode B. cereus T spore single-chain antibody and streptavidin were connected for use in immunoassays and immobilization of the recombinant antibodies. A truncated streptavidin, which is smaller than but has biotin binding ability similar to that of streptavidin, was used as the affinity domain because of its high and specific affinity with biotin. The fusion protein gene was expressed in Escherichia coli BL21 (DE3) with the T7 RNA polymerase-T7 promoter expression system. Immunoblotting revealed an antigen specificity similar to that of its parent native monoclonal antibody. The single-chain antibody-streptavidin fusion protein can be used in an immunoassay of B. cereus spores by applying a biotinylated enzyme detection system. The recombinant antibodies were immobilized on biotinylated magnetic beads by taking advantage of the strong biotin-streptavidin affinity. Various liquids were artificially contaminated with 5 × 104 B. cereus spores per ml. Greater than 90% of the B. cereus spores in phosphate buffer or 37% of the spores in whole milk were tightly bound and removed from the liquid phase by the immunomagnetic beads.  相似文献   

14.
15.
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.  相似文献   

16.
An intracellular, glucose-containing polysaccharide accumulates in Bacillus cereus early in sporulation and is degraded at the time of spore maturation. This pattern of accumulation and degradation occurred when growth was limited by glucose or a component of yeast extract. These data suggest that the polysaccharide may be serving as a carbon and energy storage compound for sporulation. A somewhat similar pattern of accumulation and degradation of poly-beta-hydroxybutyric acid (PHB) was shown earlier by Kominek and Halvorson (1965) to occur in Bacillus cereus. When cells were grown in a medium buffered strongly at pH 7.4, however, very little accumulation of PHB occurred. We have found that polysaccharide accumulates in cells grown in both the strong and weakly buffered media. Perhaps polysaccharide is the major carbon and energy storage compound when cells are grown under conditions preventing significant accumulation of PHB. The lack of polysaccharide accumulation during the exponential phase of growth may be an indication that the needed biosynthetic enzymes are controlled by catabolite repression during growth. The polysaccharide was purified and found to consist of glucose. The iodine absorption spectrum suggests a degree of branching between that of glycogen and amylopectin.  相似文献   

17.
The effect of amino acids on sporulation is discussed. Heat-resistant spores were produced in a chemically defined medium.  相似文献   

18.
Heat resistance of Bacillus cereus and Bacillus licheniformis spores in quarter-strength Ringer solution decreases markedly after ultrasonic treatments which are unable to kill a significant proportion of the spore population. This effect does not seem to be caused by a loss of Ca(2+) or dipicolinic acid. The use of ultrasonics to eliminate vegetative cells or to break aggregates in Bacillus spore suspensions to be used subsequently in heat resistance experiments appears to be unadvisable.  相似文献   

19.
CotE is a morphogenic protein that controls the assembly of the coat, the proteinaceous structure that surrounds and protects the spore of Bacillus subtilis. CotE has long been thought to interact with several outer coat components, but such interactions were hypothesized from genetic experiment results and have never been directly demonstrated. To study the interaction of CotE with other coat components, we focused our attention on CotC and CotU, two outer coat proteins known to be under CotE control and to form a heterodimer. We report here the results of pull-down experiments that provide the first direct evidence that CotE contacts other coat components. In addition, coexpression experiments demonstrate that CotE is needed and sufficient to allow formation of the CotC-CotU heterodimer in a heterologous host.The spore of Bacillus subtilis is a dormant cell, resistant to harsh conditions and able to survive extreme environmental conditions (25). Spores are produced in a sporangium that consists of an inner cell, the forespore, that will become the mature spore and an outer cell, the mother cell, that will lyse, liberating the mature spore (18, 26). Resistance of the spore to noxious chemicals, lytic enzymes, and predation by soil protozoans is in part due to the coat, a complex, multilayered structure of more than 50 proteins that encases the spore (5, 8, 13). Proteins that constitute the coat are produced in the mother cell and deposited around the outer membrane surface of the forespore in an ordered manner (8).A small subset of coat proteins have a regulatory role on the formation of the coat. Those proteins, referred to as morphogenic factors, do not affect the synthesis of the coat components but drive their correct assembly outside of the outer forespore membrane (8). Within this subset of regulatory coat proteins, SpoIVA and CotE play a crucial role. SpoIVA (6, 20, 23) is assembled into the basement layer of the coat and is anchored to the outer membrane of the forespore through its C terminus that contacts SpoVM, a small, amphipathic peptide embedded in the forespore membrane (16, 21, 22). A spoIVA-null mutation impairs the assembly of the coat around the forming spore, and as a consequence, coat material accumulates in the mother cell cytoplasm (23).CotE (28) assembles into a ring and surrounds the SpoIVA basement structure. The inner layer of the coat is then formed between the SpoIVA basement layer and the CotE ring by coat components produced in the mother cell that infiltrate through the CotE ring, while the outer layer of the coat is formed outside of CotE (6). However, not all CotE molecules are assembled into the ring-like structure, and CotE molecules are also found in the mother cell cytoplasm, at least up to 8 h after the start of sporulation (3). CotE was first identified as a morphogenic factor in a seminal study in which an ultrastructural analysis indicated that a cotE-null mutation prevented formation of the electron-dense outer layer of the coat while it did not affect inner coat formation (28). A subsequent mutagenesis study has revealed that CotE has a modular structure with a C-terminal domain involved in directing the assembly of various coat proteins, an internal domain involved in the targeting of CotE to the forespore, and a N-terminal domain that, together with the internal domain, directs the formation of CotE multimers (17). More recently, formation of CotE multimers has been also confirmed by a yeast two-hybrid approach (14). In a global study of protein interactions in the B. subtilis coat, performed by a fluorescence microscopy analysis of a collection of strains carrying cot-gfp fusions, CotE has been proposed to interact with most outer coat components (12).From those and other studies, the interactions of CotE with coat structural components have been exclusively inferred on the basis of genetic experiment results, i.e., cotE mutants that failed to assemble one or more coat components. Evidence of a direct interaction between CotE and another coat component has never been provided. We addressed this issue by using as a model two coat components, CotC and CotU, known to be controlled by CotE and to form a heterodimer (10, 28).CotC is an abundant, 66-amino-acid protein known to assemble in the outer coat in various forms: a monomer of 12 kDa, a homodimer of 21 kDa, and two less abundant forms of 12.5 and 30 kDa, probably due to posttranslational modifications of CotC (9). CotU is a structural homolog of CotC of 86 amino acids. The two proteins, which share an almost identical N terminus and a less conserved C terminus, interact, originating the formation of a heterodimer of 23 kDa (10). Heterodimer formation most likely requires a B. subtilis-specific factor since it does not occur in Escherichia coli or Saccharomyces cerevisiae (10). CotC and CotU are synthesized in the mother cell compartment of the sporulating cell but do not accumulate there since they are immediately assembled around the forming spore (10). In a strain carrying a cotE-null mutation, CotC and CotU, together with all other outer coat components, do not assemble around the forming spore (10). CotC and CotU are also dependent on CotH, an additional morphogenic factor involved in coat formation (9). A cotH-null mutation prevents CotC and CotU assembly in the coat as well as their accumulation in the mother cell cytoplasm (10). Since a mutation causing cotH overexpression allows CotC and CotU accumulation in the mother cell cytoplasm (1), it has been proposed that CotH acts by stabilizing CotC and CotU in the mother cell cytoplasm (1, 10).Here we provide the first direct evidence that CotE interacts with two other coat components, CotC and CotU, and show that CotE is essential and sufficient to mediate CotC-CotU interaction to form a heterodimer.  相似文献   

20.
Purine nucleoside phosphorylase (EC 2.4.2.1) from Bacillus cereus T was examined at hourly intervals during growth and sporulation. The enzyme has maximal activity in extracts prepared from cells during stages I and II. The activity during exponential growth is only 6.6% of the maximum and that in free spores is only 3.3%. Conservation of the purine nucleoside phosphorylase during sporulation is apparent as shown by the gradual increase in heat resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号