首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oldham P  Hall S  Burton G 《PloS one》2012,7(4):e34368
This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves.  相似文献   

2.
This article considers professionalization as a governance strategy for synthetic biology, reporting on social science interviews done with scientists, science journal editors, members of science advisory boards and authors of nongovernmental policy reports on synthetic biology. After summarizing their observations about the potential advantages and disadvantages of the professionalization of synthetic biology, we analyze professionalization as a strategy that overcomes dichotomies found in the current debates about synthetic biology governance, specifically “top down” versus “bottom up” governance and scientific fact versus public values. Professionalization combines community and state, fact and value. Like all governance options, professionalization has limitations, particularly regarding war and peace. It is best conceptualized as potentially part of a wider range of governance mechanisms working in concert: a “web of prevention”.  相似文献   

3.
Current advances in the emerging field of synthetic biology and the improvements in key technologies promise great impacts, not only on future scientific development, but also on the economy. In this paper we will adopt the triple helix concept for analyzing the early stages of a new field of science and innovation, namely synthetic biology. Synthetic biology is based on the creation and assembly of parts in order to create new and more complex structures and functions. These features of synthetic biology raise questions related to standardization and intellectual property, but also to security and public perception issues that go beyond the classical biotechnology discussions. These issues concern all involved actors in the synthetic biology field and affect the interrelationship between science, industry and policy. Based on the results of the recently finished EU FP-6 funded project TESSY (http://www.tessy-europe.de), the article analyzes these issues. Additionally, it illustrates the setting of clear framework conditions for synthetic biology research and development and the identification and definition of common goals for the future development of the field which will be needed for efficient science–industry–policy interaction. It was shown that it will be crucial to develop approaches that consider the needs of science and industry, on the one hand, and comply with the expectations of society, on the other hand. As synthetic biology is a global activity, the involvement of national decision-makers in international initiatives will further stimulate the development of the field.  相似文献   

4.
2010年5月20日,美国Science杂志报道J.Craig Venter的研究小组制造了第一个能够自我复制的人工合成生命,并立即引发了人们对这一研究潜在威胁的担忧和有关生物安全和生物伦理的讨论。但同时,这一成果也是人类在合成生物学领域的一次突破。我们相信在后基因组时代,合成生物学的发展必将广泛地应用于能源、环境、材料、医药等诸多领域,从而影响和改变人类未来的生活。  相似文献   

5.
Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008). Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".  相似文献   

6.
As a key focus of synthetic biology, building a minimal artificial cell has given rise to many discussions. A synthetic minimal cell will provide an appropriate chassis to integrate functional synthetic parts, devices and systems with functions that cannot generally be found in nature. The design and construction of a functional minimal genome is a key step while building such a cell/chassis since all the cell functions can be traced back to the genome. Kinds of approaches, based on bioinformatics and molecular biology, have been developed and proceeded to derive essential genes and minimal gene sets for the synthetic minimal genome. Experiments about streamlining genomes of model bacteria revealed genome reduction led to unanticipated beneficial properties, such as high electroporation efficiency and accurate propagation of recombinant genes and plasmids that were unstable in other strains. Recent achievements in chemical synthesis technology for large DNA segments together with the rapid development of the whole-genome sequencing, have transferred synthesis of genes to assembly of the whole genomes based on oligonucleotides, and thus created strong preconditions for synthesis of artificial minimal genome. Here in this article, we review briefly the history and current state of research in this field and summarize the main methods for making a minimal genome. We also discuss the impacts of minimized genome on metabolism and regulation of artificial cell.  相似文献   

7.
How are public perceptions towards synthetic biology likely to evolve? Which factors will impact the framing of this emerging technology, its benefits and risks? The objective of this article is not to draw exhaustive conclusions about public perceptions of synthetic biology, but rather to provide readers with a review of integrated findings from the first quantitative and qualitative research ever conducted on this subject in the United States. Synthetic biology survey research shows two clear findings. The first is that most people know little or nothing about synthetic biology. Second, notwithstanding this lack of knowledge, respondents are likely to venture some remark about what they think synthetic biology is and the tradeoff between potential benefits and potential risks. Finding only some support for the “familiarity argument”—according to which support for emerging technologies will likely increase as awareness of them develops—this article suggests that analogs to cloning, genetic engineering and stem cell research appear to be recurrent in the framing process of synthetic biology. The domain of application seems to be another decisive factor in the framing of synthetic biology. Finally, acceptance of the risk-benefit tradeoff of synthetic biology seems to depend on having an oversight structure that would prove able to manage unknowns, human and environmental concerns, and long-term effects. The most important conclusion of this study is the need for additional investigation of factors that will shape public perceptions about synthetic biology, its potential benefits, and its potential risks.  相似文献   

8.
合成生物学技术和产品因其广阔的应用前景和难以预知的生态风险, 受到各国的广泛关注。2014年10月在韩国平昌召开的《生物多样性公约》第十二次缔约方大会上, 合成生物学首次被作为正式议题进行讨论。本文梳理了《生物多样性公约》框架下合成生物学从提出到成为“新的与正在出现的议题”的过程, 分析了《生物多样性公约》在该议题上对缔约国的最新要求, 以及我国合成生物学技术发展和风险评估现状。当前我国合成生物学研究处于起步阶段,近年来的科研投入不断增大,但距离成熟的商业化仍有相当距离。我国对相关技术风险评估能力欠缺,且尚未明确负责其生物安全管理的主管部门。本文提出了以严控风险、适度鼓励研究开发和要求发达国家提供更多技术支持的谈判对策, 以及明确合成生物学安全风险管理的政府主管部门、通过技术开发以推动风险评估、构建国家合成生物学数据库和建立专业风险评估团队等履约建议。  相似文献   

9.
Tait J 《EMBO reports》2012,13(7):579-579
As resistance to synthetic biology slowly coalesces, governments and scientists need to be proactive to avoid a repetition of the near moratorium on genetically modified crops in Europe.Synthetic biology has the potential to revolutionize the development of drugs, vaccines, biofuels and food crops, and to clean up environmental pollution, but the field is relatively young. It is too early to tell how it will deliver new fundamental understandings in the life sciences, how this understanding will create opportunities for innovation to satisfy human needs and the extent to which its applications might generate hazards to people or the environment.Synthetic biology is now being linked by NGOs to genetically modified (GM)crop development with potentially similar results for its future development [1]. An NGO advocacy coalition has published a report on synthetic biology that echoes the arguments made against GM crops in the late 1990s [2] with the intention to “… reign [sic] in these new technologies”, with an ideologically based framing of the technology as inherently hazardous, based on negative conjectures with little relationship to actual evidence.The prospect of another polarized public debate had already convinced policy-makers and scientists to pay early attention to the governance of synthetic biology.Reports from the US Presidential Commission for the Study of Bioethical Issues (PCSBI) and from the International Risk Governance Council (IRGC) [3,4] have attempted to develop principles of good governance that could be applied to synthetic biology, given the uncertainty about the nature of future developments. The reports recommend that policy-makers should aim for a governance approach that can adapt to changing innovation opportunities emerging from new scientific discoveries; encourage and promote innovation; minimize risk to humans and the environment; and balance the interests and values of all relevant stakeholders. The reports reject calls for a moratorium on synthetic biology until all risks are identified and mitigated, but also reject unfettered freedom for scientific investigation. The governance of synthetic biology should achieve an equitable balance between promoting innovation and imposing constraints to ensure safety. Dialogue with stakeholders should be conducted in a manner that welcomes the respectful exchange of opposing views and encourages mutual accommodation of differing opinions. Dialogues should contribute to decisions being taken on the basis of the best available evidence. Considering potential dual-use risks of synthetic biology, both reports note that undue restriction might be counterproductive to safety and security, by preventing the development of effective safeguards against, for example, terrorist threats.These principles of good governance are part of a long-term political and policy experiment that claims to use a lighter touch and be less top-down [5], but in effect has extended the regulatory process into areas that used to be left to market forces. It claims to be more democratic by involving a wider range of stakeholders in the decision-making process, but in effect has merely led to a shift in power away from industry and commerce towards advocacy groups with equally limited claims to represent ‘society''. The impact of implementing this governance agenda on innovation has so far been more marked and damaging in Europe than in the USA, but the recent criticism by Friends of the Earth and other advocacy groups might signal a change of emphasis and put the balanced approach to the governance of synthetic biology, that has so far been achieved, at risk.Indeed, the availability and quality of the scientific evidence used to support policy advice and decision-making, has been a major casualty of the new governance approach as applied in the EU to GM crops—as evidenced by the destruction of GM crop trials designed to evaluate the safety and efficacy of these crops. The role of neutral, impartial evidence in political decision-making has been diminished in favour of evidence that suits the agendas of particular advocacy groups. Politicians themselves helped to create this situation by shying away from making difficult, unpopular decisions on the basis of hard evidence, in favour of trying to accommodate all opinions, including ideologically driven agendas. Arthur Miller describes the sense of liberation experienced when eschewing the role of evidence in decision-making: “It was as though the absence of real evidence was a release from the burdens of this world; [….] Evidence, in contrast, is effort; leaping to conclusions is a wonderful pleasure…” [6].There is a need to reappraise both the role of scientific evidence in informing policy and political decision-making on new biotechnologies, and the legitimate context in which to accomodate value-based opinions as represented by NGOs.  相似文献   

10.
合成生物学生物安全风险评价与管理   总被引:1,自引:0,他引:1  
合成生物学(synthetic biology)已迅速发展为生命科学最具发展潜力的分支学科之一,但它同时也会给生态环境和人类健康带来潜在的风险。结合国内外合成生物学发展现状,本文综述了基因回路(DNA-based biocircuits)、最小基因组(minimal genome)、原型细胞(protocells)、化学合成生物学(chemical synthetic biology)等涉及的风险评价、合成生物学与生物安全工程(biosafety engineering)、合成生物学对社会伦理道德法律的影响以及当前热点议题,如生物朋(黑)客(biopunk(or biohackery))、家置生物学(garage biology)、DIY生物学(do-it-yourselfbiology)、生物恐怖主义(bioterrorism)等方面的新进展。分析讨论了世界各国合成生物学以自律监管或技术为主的安全管理原则和基于5个不同政策干预点的5P管理策略的合理性与潜在不足。同时结合我国合成生物学当前研究进展以及现有的安全管理规范,提出了建立以安全评价为核心的法规体系、生物学生物安全规范以及加强研发单位内部管理和生物安全科普宣传等我国合成生物学安全管理制度与措施等建议。  相似文献   

11.
The novelty of synthetic biology lies in the use of synthesized parts that can be arranged to make useful products. Such advanced, high-throughput genetic engineering projects redesign and fabricate existing biological systems as well as new biological parts, devices and systems that do not occur in nature. This Opinion discusses challenges raised by synthetic biology for public acceptance, regulation, commercialization and the emerging global issue of access to genetic resources and information. As with all new fields of research, maintaining the trust of the public and policy regulators is paramount. Hype and exaggerated claims are counterproductive to developing adaptive and ethically sound regulatory models responsive to stakeholder concerns.  相似文献   

12.
13.
The emerging field of synthetic biology has the potential to improve global health. For example, synthetic biology could contribute to efforts at vaccine development in a context in which vaccines and immunization have been identified by the international community as being crucial to international development efforts and, in particular, the millennium development goals. However, past experience with innovations shows that realizing a technology’s potential can be difficult and complex. To achieve better societal embedding of synthetic biology and to make sure it reaches its potential, science and technology development should be made more inclusive and interactive. Responsible research and innovation is based on the premise that a broad range of stakeholders with different views, needs and ideas should have a voice in the technological development and deployment process. The interactive learning and action (ILA) approach has been developed as a methodology to bring societal stakeholders into a science and technology development process. This paper proposes an ILA in five phases for an international effort, with national case studies, to develop socially robust applications of synthetic biology for global health, based on the example of vaccine development. The design is based on results of a recently initiated ILA project on synthetic biology; results from other interactive initiatives described in the literature; and examples of possible applications of synthetic biology for global health that are currently being developed.  相似文献   

14.
15.
基于生物质资源生产环境友好的生物燃料,对经济和社会的可持续发展具有重要意义,但其生产成本高的问题十分突出,而高效生产菌株的获得是解决这一问题的根本出路。以下综述了利用系统生物学研究所获得的信息进行菌种改造的过程,重点论述了生产菌株胁迫耐受性方面的研究进展,并讨论了系统生物学、合成生物学和代谢工程技术在改造生物燃料生产菌株中的应用,展望了合成生物学在构建高效生物能源生产菌株方面应用的前景。  相似文献   

16.
合成生物学是一个基于生物学和工程学原理的科学领域,其目的是重新设计和重组微生物,以优化或创建具有增强功能的新生物系统。该领域利用分子工具、系统生物学和遗传框架的重编程,从而构建合成途径以获得具有替代功能的微生物。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂进而从可再生资源中生产化学物质。然而,近年来合成生物学技术开始在环境保护中发挥着更直接的作用。本综述介绍了基因工程中的合成生物学工具,讨论了基于基因工程的微生物修复策略,强调了合成生物学技术可以通过响应特定污染物进行生物修复来保护环境。其中,规律间隔成簇短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats, CRISPR)技术在基因工程细菌和古细菌的生物修复中得到了广泛应用,生物修复领域也出现了很多新的先进技术,包括生物膜工程、人工微生物群落的构建、基因驱动、酶和蛋白质工程等。有了这些新的技术和工具,生物修复将成为当今最好和最有效的污染物去除方式之一。  相似文献   

17.
18.
As synthetic biology develops into a promising science and engineering field, we need to have clear ideas and priorities regarding its safety, security, ethical and public dialogue implications. Based on an extensive literature search, interviews with scientists, social scientists, a 4 week long public e-forum, and consultation with several stakeholders from science, industry and civil society organisations, we compiled a list of priority topics regarding societal issues of synthetic biology for the years ahead. The points presented here are intended to encourage all stakeholders to engage in the prioritisation of these issues and to participate in a continuous dialogue, with the ultimate goal of providing a basis for a multi-stakeholder governance in synthetic biology. Here we show possible ways to solve the challenges to synthetic biology in the field of safety, security, ethics and the science–public interface.  相似文献   

19.
刘晓  熊燕  王方  赵国屏 《生命科学》2012,(11):1334-1338
合成生物学是以基因组学、系统生物学知识和分子生物学技术为基础,综合了科学与工程的一门新兴交叉学科。它使生命科学和生物技术研发进入了以人工设计、合成自然界中原本不曾出现的人造生命体系,以及对这些人工体系进行体内、体外优化,或利用这些人造生命体系研究自然生命规律为目标的新时代。然而,合成生物学研究在迅速发展、表现出巨大潜力和应用前景的同时,也引发了社会各界对相关社会、伦理、安全,以及知识产权等问题的重视与讨论。就世界各国针对合成生命对传统意义上生命概念的挑战、合成生物学产品存在的潜在风险危害、合成生物学研究的风险评估与监管等问题进行回顾综述和相关探讨。  相似文献   

20.
The French government has ambitious goals to make France a leading nation for synthetic biology research, but it still needs to put its money where its mouth is and provide the field with dedicated funding and other support.Synthetic biology is one of the most rapidly growing fields in the biological sciences and is attracting an increasing amount of public and private funding. France has also seen a slow but steady development of this field: the establishment of a national network of synthetic biologists in 2005, the first participation of a French team at the International Genetically Engineered Machine competition in 2007, the creation of a Master''s curriculum, an institute dedicated to synthetic and systems biology at the University of Évry-Val-d''Essonne-CNRS-Genopole in 2009–2010, and an increasing number of conferences and debates. However, scientists have driven the field with little dedicated financial support from the government.Yet the French government has a strong self-perception of its strengths and has set ambitious goals for synthetic biology. The public are told about a “new generation of products, industries and markets” that will derive from synthetic biology, and that research in the field will result in “a substantial jump for biotechnology” and an “industrial revolution”[1,2]. Indeed, France wants to compete with the USA, the UK, Germany and the rest of Europe and aims “for a world position of second or third”[1]. However, in contrast with the activities of its competitors, the French government has no specific scheme for funding or otherwise supporting synthetic biology[3]. Although we read that “France disposes of strong competences” and “all the assets needed”[2], one wonders how France will achieve its ambitious goals without dedicated budgets or detailed roadmaps to set up such institutions.In fact, France has been a straggler: whereas the UK and the USA have published several reports on synthetic biology since 2007, and have set up dedicated governing networks and research institutions, the governance of synthetic biology in France has only recently become an official matter. The National Research and Innovation Strategy (SNRI) only defined synthetic biology as a “priority” challenge in 2009 and created a working group in 2010 to assess the field''s developments, potentialities and challenges; the report was published in 2011[1].At the same time, the French Parliamentary Office for the Evaluation of Scientific and Technological Choices (OPECST) began a review of the field “to establish a worldwide state of the art and the position of our country in terms of training, research and technology transfer”. Its 2012 report entitled The Challenges of Synthetic Biology[2] assessed the main ethical, legal, economic and social challenges of the field. It made several recommendations for a “controlled” and “transparent” development of synthetic biology. This is not a surprise given that the development of genetically modified organisms and nuclear power in France has been heavily criticized for lack of transparency, and that the government prefers to avoid similar future controversies. Indeed, the French government seems more cautious today: making efforts to assess potential dangers and public opinion before actually supporting the science itself.Both reports stress the necessity of a “real” and “transparent” dialogue between science and society and call for “serene […] peaceful and constructive” public discussion. The proposed strategy has three aims: to establish an observatory, to create a permanent forum for discussion and to broaden the debate to include citizens[4]. An Observatory for Synthetic Biology was set up in January 2012 to collect information, mobilize actors, follow debates, analyse the various positions and organize a public forum. Let us hope that this observatory—unlike so many other structures—will have a tangible and durable influence on policy-making, public opinion and scientific practice.Many structural and organizational challenges persist, as neither the National Agency for Research nor the National Centre for Scientific Research have defined the field as a funding priority and public–private partnerships are rare in France. Moreover, strict boundaries between academic disciplines impede interdisciplinary work, and synthetic biology is often included in larger research programmes rather than supported as a research field in itself. Although both the SNRI and the OPECST reports make recommendations for future developments—including setting up funding policies and platforms—it is not clear whether these will materialize, or when, where and what size of investments will be made.France has ambitious goals for synthetic biology, but it remains to be seen whether the government is willing to put ‘meat to the bones'' in terms of financial and institutional support. If not, these goals might come to be seen as unrealistic and downgraded or they will be replaced with another vision that sees synthetic biology as something that only needs discussion and deliberation but no further investment. One thing is already certain: the future development of synthetic biology in France is a political issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号