首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution.  相似文献   

2.
Alzheimer’s disease (AD)-associated amyloid β peptide (Aβ) is one of the main actors in AD pathogenesis. Aβ is characterized by its high tendency to self-associate, leading to the generation of oligomers and amyloid fibrils. The elucidation of pathways and intermediates is crucial for the understanding of protein assembly mechanisms in general and in conjunction with neurodegenerative diseases, e.g., for the identification of new therapeutic targets. Our study focused on Aβ42 and its oligomeric assemblies in the lag phase of amyloid formation, as studied by sedimentation velocity (SV) centrifugation. The assembly state of Aβ during the lag phase, the time required by an Aβ solution to reach the exponential growth phase of aggregation, was characterized by a dominant monomer fraction below 1 S and a population of oligomeric species between 4 and 16 S. From the oligomer population, two major species close to a 12-mer and an 18-mer with a globular shape were identified. The recurrence of these two species at different initial concentrations and experimental conditions as the smallest assemblies present in solution supports the existence of distinct, energetically favored assemblies in solution. The sizes of the two species suggest an Aβ42 aggregation pathway that is based on a basic hexameric building block. The study demonstrates the potential of SV analysis for the evaluation of protein aggregation pathways.  相似文献   

3.
Since the solution of the molecular structures of members of the voltage dependent anion channels (VDACs), the N-terminal α-helix has been the main focus of attention, since its strategic location, in combination with its putative conformational flexibility, could define or control the channel’s gating characteristics. Through engineering of two double-cysteine mVDAC1 variants we achieved fixing of the N-terminal segment at the bottom and midpoint of the pore. Whilst cross-linking at the midpoint resulted in the channel remaining constitutively open, cross-linking at the base resulted in an “asymmetric” gating behavior, with closure only at one electric field´s orientation depending on the channel’s orientation in the lipid bilayer. Additionally, and while the native channel adopts several well-defined closed states (S1 and S2), the cross-linked variants showed upon closure a clear preference for the S2 state. With native-channel characteristics restored following reduction of the cysteines, it is evident that the conformational flexibility of the N-terminal segment plays indeed a major part in the control of the channel’s gating behavior.  相似文献   

4.
5.
Soluble oligomeric amyloid β (oAβ) causes synaptic dysfunction and neuronal cell death, which are involved in the pathogenesis of Alzheimer''s disease (AD). The hematopoietic growth factor granulocyte-colony stimulating factor (G-CSF) is expressed in the central nervous system (CNS) and drives neurogenesis. Here we show that G-CSF attenuated oAβ neurotoxicity through the enhancement of the enzymatic activity of Aβ-degrading enzyme neprilysin (NEP) in neurons, while the NEP inhibitor thiorphan abolished the neuroprotection. Inhibition of MEK5/ERK5, a major downstream effector of G-CSF signaling, also ablated neuroprotective effect of G-CSF. Furthermore, intracerebroventricular administration of G-CSF enhanced NEP enzymatic activity and clearance of Aβ in APP/PS1 transgenic mice. Thus, we propose that G-CSF may be a possible therapeutic strategy against AD.  相似文献   

6.
Immunoglobulin (Ig)-like domains are found frequently on the surface of tailed double-stranded DNA bacteriophages, yet their functional role remains obscure. Here, we have investigated the structure and function of the C-terminal Ig-like domain of gpV (gpVC), the tail tube protein of phage λ. This domain has been predicted through sequence similarity to be a member of the bacterial Ig-like domain 2 (Big_2) family, which is composed of more than 1300 phage and bacterial sequences. Using trypsin proteolysis, we have delineated the boundaries of gpVC and have shown that its removal reduces the biological activity of gpV by 100-fold; thus providing a definitive demonstration of a functional role for this domain. Determination of the solution structure of gpVC by NMR spectroscopy showed that it adopts a canonical Ig-like fold of the I-set class. This represents the first structure of a phage-encoded Ig-like domain and only the second structure of a Big_2 domain. Structural and sequence comparisons indicate that the gpVC structure is more representative of both the phage-encoded Big_2 domains and Big_2 domains in general than the other available Big_2 structure. Bioinformatics analyses have identified two conserved clusters of residues on the surface of gpVC that may be important in mediating the function of this domain.  相似文献   

7.
The amyloid precursor protein (APP) is a widely expressed type I transmembrane (TM) glycoprotein present at the neuronal synapse. The proteolytic cleavage by γ-secretase of its C-terminal fragment produces amyloid-β (Aβ) peptides of different lengths, the deposition of which is an early indicator of Alzheimer disease. At present, there is no consensus on the conformation of the APP-TM domain at the biological membrane. Although structures have been determined by NMR in detergent micelles, their conformation is markedly different. Here we show by using molecular simulations that the APP-TM region systematically prefers a straight α-helical conformation once embedded in a membrane bilayer. However, APP-TM is highly flexible, and its secondary structure is strongly influenced by the surrounding lipid environment, as when enclosed in detergent micelles. This behavior is confirmed when analyzing in silico the atomistic APP-TM population observed by residual dipolar couplings and double electron-electron resonance spectroscopy. These structural and dynamic features are critical in the proteolytic processing of APP by the γ-secretase enzyme, as suggested by a series of Gly700 mutants. Affecting the hydration and flexibility of APP-TM, these mutants invariantly show an increase in the production of Aβ38 compared with Aβ40 peptides, which is reminiscent of the effect of γ-secretase modulators inhibitors.  相似文献   

8.

Background

The specific role of microglia on Aβ-mediated neurotoxicity is difficult to assign in vivo due to their complicated environment in the brain. Therefore, most of the current microglia-related studies employed the isolated microglia. However, the previous in vitro studies have suggested either beneficial or destructive function in microglia. Therefore, to investigate the phenotypes of the isolated microglia which exert activity of neuroprotective or destructive is required.

Results

The present study investigates the phenotypes of isolated microglia on protecting neuron against Aβ-mediated neurotoxicity. Primary microglia were isolated from the mixed glia culture, and were further cultured to distinct phenotypes, designated as proliferating amoeboid microglia (PAM) and differentiated process-bearing microglia (DPM). Their inflammatory phenotypes, response to amyloid β (Aβ), and the beneficial or destructive effects on neurons were investigated. DPM may induce both direct neurotoxicity without exogenous stimulation and indirect neurotoxicity after Aβ activation. On the other hand, PAM attenuates Aβ-mediated neurotoxicity through Aβ phagocytosis and/or Aβ degradation.

Conclusions

Our results suggest that the proliferating microglia, but not the differentiated microglia, protect neurons against Aβ-mediated neurotoxicity. This discovery may be helpful on the therapeutic investigation of Alzheimer’s disease.  相似文献   

9.
Bovine β-casein (β-CN) with its C-terminal truncated by chymosin digestion, β-CN-(f1-192), was examined and characterized using circular dichroism (CD) under various temperature conditions. CONTIN/LL analysis of the CD data revealed significant secondary structure disruption in β-CN-(f1-192) relative to its parent protein,β-CN, in the temperature range (5° to 70°C) studied. Near-UV CD spectra indicated significant temperature dependent structural changes. Analytical ultracentrifugation results showed significant reduction but not complete abolishment of self-association in β-CN-(f1-192) compared to whole β-casein at 2°–37°C. Furthermore, binding experiments with the common hydrophobic probe – 8-anilino-1- naphthalene sulfonic acid (ANS) illustrated that β-CN-(f1-192) is nearly incapable of binding to ANS relative to whole β-CN, suggesting a nearly complete open overall tertiary structure brought about by the C-terminal truncation. It has been demonstrated clearly that the tail peptide β-CN-(f193-209) is important in maintaining the hydrophobic core of β-CN but the residual association observed argues for a minor role for other sites as well.  相似文献   

10.
Amyloidogenic intrinsically disordered proteins, α-synuclein and tau are linked to Parkinson's disease and Alzheimer's disease, respectively. A body of evidence suggests that α-synuclein and tau, both present in the presynaptic nerve terminals, co-aggregate in many neurological ailments. The molecular mechanism of α-synuclein-tau hetero-assembly is poorly understood. Here we show that amyloid formation is synergistically facilitated by heterotypic association mediated by binding-induced misfolding of both α-synuclein and tau K18. We demonstrate that the intermolecular association is largely driven by the electrostatic interaction between the negatively charged C-terminal segment of α-synuclein and the positively charged tau K18 fragment. This heterotypic association results in rapid formation of oligomers that readily mature into hetero-fibrils with a much shorter lag phase compared to the individual proteins. These findings suggested that the critical intermolecular interaction between α-synuclein and tau can promote facile amyloid formation that can potentially lead to efficient sequestration of otherwise long-lived lethal oligomeric intermediates into innocuous fibrils. We next show that a well-known familial Parkinson's disease mutant (A30P) that is known to aggregate slowly via accumulation of highly toxic oligomeric species during the long lag phase converts into amyloid fibrils significantly faster in the presence of tau K18. The early intermolecular interaction profoundly accelerates the fibrillation rate of A30P α-synuclein and impels the disease mutant to behave similar to wild-type α-synuclein in the presence of tau. Our findings suggest a mechanistic underpinning of bypassing toxicity and suggest a general strategy by which detrimental amyloidogenic precursors are efficiently sequestered into more benign amyloid fibrils.  相似文献   

11.
The ability of a cationic lipid to deliver plasmid DNA (pDNA) in presence of the neurotoxic fragment of amyloid -peptide was evaluated. Pre-treatment of cells with AP (25–35) peptide resulted in a modest increase in transgene expression. When AP (25–35) peptide was mixed with the pDNA/liposome complex and used, the complexes lost their ability to transfect. However, the reverse sequenced AP (35–25) peptide demonstrated no significant differences in transgene expression in pre-treated cells, and in cells where AP (35–25) peptide was mixed with pDNA/liposome complexes and transfected. The amount of pDNA delivered to the cells was decreased in presence of AP (25–35) as measured with flow cytometry using fluorescently labeled liposomes. The decreased endocytosis may be due to their rod-like structure formation as demonstrated by electron microscopy and atomic force microscopy (AFM). These results demonstrate that AP (25–35) peptide may interfere with gene delivery with cationic systems.  相似文献   

12.
Abstract

The three dimensional structure of the activiral agent, 5-methoxymethyl-2′-deoxyuridine (MmdUrd) was determined by x-ray diffraction methods. MMdUrd crystallized in space group P212121 of the orthorhombic system with a = 9.166(1)A, b, = 25.348(1)Amm c = 5.270(1)A and Z = 4. The conformation of the glycosyl bond is anti (χ = 233.30), the deoxyribose ring has the C(2′)-endo envelope conformation (2E), the CH2OH side chain has the g+ conformation and the methoxy group at the C(5) position is on the same side of pyrimidine plane as the 0(4′) oxygen. NMR spectroscopy was used to determine the conformation in solution. The spectra indicate that the sugar ring exists in a 60:40 equilibrium of the S- and N-states. The population of the three rotamers about the exocyclic c(4′)–C(5′) bond were estimated to be g+:t:g::61%:31%:8%. The correlaiton of molecular conforation with antiviral activity is discussed.  相似文献   

13.
The type VI secretion system (T6SS) is a specialized macromolecular complex dedicated to the delivery of protein effectors into both eukaryotic and bacterial cells. The general mechanism of action of the T6SS is similar to the injection of DNA by contractile bacteriophages. The cytoplasmic portion of the T6SS is evolutionarily, structurally and functionally related to the phage tail complex. It is composed of an inner tube made of stacked Hcp hexameric rings, engulfed within a sheath and built on a baseplate. This sheath undergoes cycles of extension and contraction, and the current model proposes that the sheath contraction propels the inner tube toward the target cell for effector delivery. The sheath comprises two subunits: TssB and TssC that polymerize under an extended conformation. Here, we show that isolated TssB forms trimers, and we report the crystal structure of a C-terminal fragment of TssB. This fragment comprises a long helix followed by a helical hairpin that presents surface-exposed charged residues. Site-directed mutagenesis coupled to functional assay further showed that these charges are required for proper assembly of the sheath. Positioning of these residues in the extended T6SS sheath structure suggests that they may mediate contacts with the baseplate.  相似文献   

14.
15.
The epithelial sodium channel (ENaC) is regulated by hormones and by other intracellular or extracellular factors. It is activated by the sulfonylurea drug glibenclamide. The activator effect of glibenclamide is fast and reversible and was observed in Xenopus oocytes coexpressing the α subunit from human, Xenopus, or guinea pig (but not rat) with βγ-rat ENaC subunits. The mechanism of this effect is not yet well understood. We hypothesize that the extracellular loop of ENaC plays a major role in this activation. Mutants and chimeras of α subunits harboring different parts of the rat and guinea pig α-subunit extracellular loops were generated and coexpressed with βγ-rat subunits in Xenopus oocytes. The effect of glibenclamide on ENaC activity was measured using two-electrode voltage-clamp technique. The α-rat ENaC chimera containing the C-terminal part of the extracellular loop of the α-guinea pig ENaC was significantly stimulated by glibenclamide (1.26-fold), whereas the rat-α combination was not activated by this sulfonylurea. Mutagenesis of specific residues on the rat α subunit did not generate channels sensitive to glibenclamide, suggesting that the overall structure of the extracellular loop is required for activation of the channel by this drug. These results support the hypothesis of the existence of a role played by the last 100 amino acids of the extracellular loop and confirm that the ENaC behaves as a ligand-gated channel similar to several other members of the ENaC/degenerin family.  相似文献   

16.
Amyloid fibrils, rigid and filamentous aggregates associated with various diseases, are often difficult to depolymerize into monomers. Ultrasonication is a strong agitation that accelerates nucleation above the critical concentration of amyloid fibrillation. We examined the effects of ultrasonication on the fibrils of amyloid β(1–40) as well as on monomers. Ultrasonic pulses accelerated spontaneous fibrillation when the peptide concentration was above 1 μM. On the other hand, ultrasonic pulses accelerated the depolymerization of fibrils into monomers at 1 μM. These results indicate that, although amyloid fibrillation is a reversible process determined by thermodynamic stability, kinetically trapped supersaturation and physical difficulty of dissolving rigid fibrils prevent the smooth phase transitions. We propose that, in addition to accelerating the nucleation of fibrillation and fragmentation of fibrils above the critical concentration, ultrasonication is useful for dissolving fibrils below the critical concentration.  相似文献   

17.
Structure of amyloid β (Aβ) fibrils is rigidly stacked by β-sheet conformation, and the fibril state of Aβ is profoundly related to pathogenesis of Alzheimer’s disease (AD). Although mid-infrared light has been used for various biological researches, it has not yet been known whether the infrared light changes the fibril structure of Aβ. In this study, we tested the effect of irradiation of intense mid-infrared light from a free-electron laser (FEL) targeting the amide bond on the reduction of β-sheet content in Aβ fibrils. The FEL reduced entire contents of proteins exhibiting β-sheet structure in brain sections from AD model mice, as shown by synchrotron-radiation infrared microscopy analysis. Since Aβ1-42 fibril absorbed a considerable FEL energy at amide I band (6.17 μm), we irradiated the FEL at 6.17 μm and found that β-sheet content of naked Aβ1-42 fibril was decreased using infrared microscopic analysis. Consistent with the decrease in the β-sheet content, Congo-red signal is decreased after the irradiation to Aβ1-42 fibril. Furthermore, electron microscopy analysis revealed that morphologies of the fibril and proto-fibril were largely changed after the irradiation. Thus, mid-infrared light dissociates β-sheet structure of Aβ fibrils, which justifies exploration of possible laser-based therapy for AD.  相似文献   

18.
19.
The deposition of amyloid β (Aβ) peptides is a pathological hallmark of Alzheimer disease. Aβ peptides were previously considered to interact specifically with ganglioside-containing membranes. Several studies have suggested that Aβ peptides also bind to phosphatidylcholine membranes, which lead to deformation of membranes and fibrillation of Aβ. Moreover, the role of membrane curvature, one type of deformation produced by binding of proteins to a membrane, in the binding and fibrillation of Aβ remains unclear. To clearly understand the relationship between the binding, consequent membrane deformation, and fibrillation of Aβ, we examined the amyloid fibrillation of Aβ-(1–40) in the presence of liposomes of various sizes. Membrane curvature increased with a decrease in the size of the liposomes. We used liposomes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine to eliminate electrostatic effects. The results obtained showed that liposomes of smaller sizes (≤50 nm) significantly accelerated the nucleation step, thereby shortening the lag time of fibrillation. On the other hand, liposomes of larger sizes decreased the amount of fibrils but did not notably affect the lag time. The morphologies of fibrils, which were monitored by total internal reflection fluorescence microscopy, atomic force microscopy, and transmission electron microscopy, revealed that the length of Aβ-(1–40) fibrils became shorter and the amount of amorphous aggregates became larger as liposomes increased in size. These results suggest that the curvature of membranes coupled with an increase in water-accessible hydrophobic regions is important for binding and concentrating Aβ monomers, leading to amyloid nucleation. Furthermore, amyloid fibrillation on membranes may compete with non-productive binding to produce amorphous aggregates.  相似文献   

20.
Islet amyloid polypeptide (IAPP or amylin) forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer''s disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号