首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

2.
1. Forest fragmentation affects many ecosystem processes by spatially altering relationships among organisms. Herbivory by arthropods is an important ecosystem processes in forests that fragmentation alters by changing relationships among herbivores, their predators, and their hosts. The relative importance of these factors remains unclear. 2. It was tested whether the exclusion of vertebrate predators affected the arthropod abundance or amounts of herbivory in a fragmented, deciduous forest landscape in southern Quebec. Differences in the abundance of arthropod herbivores and amounts of herbivory in forest patches with different landscape characteristics (small isolated patches versus large connected ones), on sugar maple saplings with or without exclosures that restricted access by large vertebrate predators were measured. 3. Saplings protected from predators with exclosures had greater abundances of all arthropods (herbivores and invertebrate predators) than those without, indicating potential top‐down effects of vertebrate predators on arthropods. Analysis of effect sizes between exclosure treatments and controls suggests the magnitude of predation effects may be affected by fragmentation. 4. Strong top‐down effects of predators on arthropods, and weak effects of fragmentation on predation or amounts of herbivory were found. As a result, herbivory may be regulated by factors other than vertebrate predation in this system.  相似文献   

3.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

4.
Habitat fragmentation can alter the trophic structure of communities and environmental conditions, thus driving changes in biodiversity and ecosystem functions. Quantifying niches of generalist predators can reveal how fragmentation alters ecosystems. In a habitat fragmentation experiment, we used stable isotopes of a generalist predator skink to test predictions from spatial theory on trophic structure and to quantify abiotic changes associated with fragmentation among continuous forest, fragments, and matrix habitats. We predicted that in fragments and the matrix, isotopic niches would shift due to decreases in skink trophic positions (δ15N) from reductions in trophic structure of arthropod food webs and abiotic changes over time (δ13C) relative to continuous forest. Contrary to theoretical predictions, we did not find evidence of reductions in trophic structure with fragmentation. In fact, skink δ15N values were higher in the matrix and fragments than continuous forest, likely due to changes in distributions of a detritivorous prey species. In addition, δ13C values in the matrix decreased over years since fragmentation due to abiotic changes associated with matrix tree maturation. We show how isotopic niches are influenced by fragmentation via shifts in biotic and abiotic processes. The potential for either or both spatial and abiotic effects of fragmentation present a challenge for theory to better predict ecological changes in fragmented landscapes.  相似文献   

5.
In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross‐continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf‐chewing and leaf‐mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter‐guild competition and top‐down regulation of herbivores by predators. Inter‐guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom‐up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.  相似文献   

6.
Stand diversification is considered a promising management approach to increasing the multifunctionality and ecological stability of forests. However, how tree diversity affects higher trophic levels and their role in regulating forest functioning is not well explored particularly for (sub)tropical regions. We analyzed the effects of tree species richness, community composition, and functional diversity on the abundance, species richness, and beta diversity of important functional groups of herbivores and predators in a large-scale forest biodiversity experiment in south-east China. Tree species richness promoted the abundance, but not the species richness, of the dominant, generalist herbivores (especially, adult leaf chewers), probably through diet mixing effects. In contrast, tree richness did not affect the abundance of more specialized herbivores (larval leaf chewers, sap suckers) or predators (web and hunting spiders), and only increased the species richness of larval chewers. Leaf chemical diversity was unrelated to the arthropod data, and leaf morphological diversity only positively affected oligophagous herbivore and hunting spider abundance. However, richness and abundance of all arthropods showed relationships with community-weighted leaf trait means (CWM). The effects of trait diversity and CWMs probably reflect specific nutritional or habitat requirements. This is supported by the strong effects of tree species composition and CWMs on herbivore and spider beta diversity. Although specialized herbivores are generally assumed to determine herbivore effects in species-rich forests, our study suggests that generalist herbivores can be crucial for trophic interactions. Our results indicate that promoting pest control through stand diversification might require a stronger focus on identifying the best-performing tree species mixtures.  相似文献   

7.
Communities are assembled from species that evolve or colonise a given geographic region, and persist in the face of abiotic conditions and interactions with other species. The evolutionary and colonisation histories of communities are characterised by phylogenetic diversity, while functional diversity is indicative of abiotic and biotic conditions. The relationship between functional and phylogenetic diversity infers whether species functional traits are divergent (differing between related species) or convergent (similar among distantly related species). Biotic interactions and abiotic conditions are known to influence macroecological patterns in species richness, but how functional and phylogenetic diversity of guilds vary with biotic factors, and the relative importance of biotic drivers in relation to geographic and abiotic drivers is unknown. In this study, we test whether geographic, abiotic or biotic factors drive biome‐scale spatial patterns of functional and phylogenetic diversity and functional convergence in vertebrate herbivores across the Arctic tundra biome. We found that functional and phylogenetic diversity both peaked in the western North American Arctic, and that spatial patterns in both were best predicted by trophic interactions, namely vegetation productivity and predator diversity, as well as climatic severity. Our results show that both bottom–up and top–down trophic interactions, as well as winter temperatures, drive the functional and phylogenetic structure of Arctic vertebrate herbivore assemblages. This has implications for changing Arctic ecosystems; under future warming and northward movement of predators potential increases in phylogenetic and functional diversity in vertebrate herbivores may occur. Our study thus demonstrates that trophic interactions can determine large‐scale functional and phylogenetic diversity just as strongly as abiotic conditions.  相似文献   

8.
Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research.  相似文献   

9.
Lucy Genua  Denon Start  Benjamin Gilbert 《Oikos》2017,126(9):1357-1365
Fragmentation and resultant changes in patch size are predicted to alter species diversity and community composition, yet the consequences of these differences for species interactions are poorly understood. Theory predicts that predators are more sensitive to fragmentation than their prey, resulting in greater predator loss in small patches. Predator loss, in turn, is predicted to 1) increase herbivory rates overall, and 2) cause herbivores to shift feeding from plants that act as refugia to those that are preferred forage. We tested these predictions in an old‐field community using two experiments. The first was a large‐scale experiment that included hundreds of arthropod species in fragments of various sizes, and used goldenrod and switchgrass to assess herbivory. Our second experiment manipulated densities of a focal predator species and a focal prey species to determine if changes in densities, rather than other characteristics of fragments, were sufficient to cause the trends observed in the first experiment. We found that predator densities declined in small fragments whereas herbivore densities showed the opposite trend. Total herbivory mirrored herbivore densities by increasing in small patches, and this mean increase was driven by large increases in goldenrod herbivory but declines in switchgrass herbivory. Experimental manipulation of densities confirmed that herbivores preferentially feed on goldenrod, and that predators depress herbivory on goldenrod but have a negligible effect on switchgrass. Our results suggest that fragmentation alters trophic interactions by causing declines in predator densities and increases in herbivore densities, but that feeding preferences of herbivores may generate unequal impacts among plant species.  相似文献   

10.
探明土壤生物多营养级相互作用是了解生态功能调控机制的核心。本研究通过调控土壤线虫的典型功能团的完全交互设计(食微线虫有无、植食线虫有无、捕杂食线虫有无)探索了线虫功能团对水稻(Oryza sativa)生长及褐飞虱(Nilaparvata lugens)数量的影响。结果表明, 与不接种线虫相比, 植食线虫显著增加水稻根系生物量(P < 0.05), 显著增加其茎叶总酚含量(P < 0.05); 单独的食微线虫增加了褐飞虱数量(P < 0.05), 但显著降低水稻根系生物量(P < 0.05); 捕杂食线虫促进水稻茎叶生长, 降低了褐飞虱数量; 当食微、植食和捕杂食线虫同时存在时, 植物茎叶及根系总酚含量均处于较高水平, 暗示其抗虫潜力更强。总之, 处于较高营养级的捕杂食线虫能够通过调控植食和食微线虫的数量, 提高植物的防御能力, 暗示土壤生物调控措施在植物地上部病原物防控方面有重要的前景。  相似文献   

11.
High diversity in tropical compared to temperate regions has long intrigued ecologists, especially for highly speciose taxa like terrestrial arthropods in tropical rainforests. Previous studies showed that arthropod herbivores account for much tropical diversity, yet differences in the diversity of predatory arthropods between tropical and temperate systems have not been properly quantified. Here, we present the first standardized tropical–temperate forest quantification of spider diversities, a dominant and mega‐diverse taxon of generalist predators. Spider assemblages were collected using a spatially replicated protocol including two standardized sampling methods (vegetation sweep netting and beating). Fieldwork took place between 2010 and 2015 in metropolitan (Brittany) and overseas (French Guiana) French territories. We found no significant difference in functional diversity based on hunting guilds between temperate and tropical forests, while species richness was 13–82 times higher in tropical versus temperate forests. Evenness was also higher, with tropical assemblages up to 55 times more even than assemblages in temperate forests. These differences in diversity far surpass previous estimates and exceed tropical–temperate ratios for herbivorous taxa.  相似文献   

12.
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots.  相似文献   

13.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

14.
Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta‐analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta‐analysis suggest that natural control in plant‐diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small‐scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.  相似文献   

15.
As a consequence of agricultural intensification and habitat fragmentation since the mid-20th century, biological diversity has declined considerably throughout the world, particularly in Europe. We assessed how habitat and landscape-scale heterogeneity, such as variation in fragment size (small vs. large) and landscape configuration (measured as connectivity index), affect plant and arthropod diversity. We focused on arthropods with different feeding behaviour and mobility, spiders (predators, moderate dispersal), true bugs (mainly herbivores and omnivores with moderate dispersal), wild bees (pollinators with good dispersal abilities), and wasps (pollinators, omnivores with good dispersal abilities). We studied 60 dry grassland fragments in the same region (Hungarian Great Plain); 30 fragments were represented by the grassland component of forest-steppe stands, and 30 were situated on burial mounds (kurgans). Forest-steppes are mosaics of dry grasslands with small forests in a matrix of plantation forests. Kurgans are ancient burial mounds with moderately disturbed grasslands surrounded by agricultural fields. The size of fragments ranged between 0.16–6.88 ha (small: 0.16–0.48 ha, large: 0.93–6.88 ha) for forest-steppes and 0.01–0.44 ha (small: 0.01–0.10 ha and large: 0.20–0.44 ha) for kurgans. Fragments also represented an isolation gradient from almost cleared and homogenous landscapes, to landscapes with relatively high compositional heterogeneity. Fragment size, connectivity, and their interaction affected specialist and generalist species abundances of forest-steppes and kurgans. Large fragments had higher species richness of ground-dwelling spiders, and the effect of connectivity was more strongly positive for specialist arthropods and more strongly negative for generalists in large than in small fragments. However, we also found a strong positive impact of connectivity for generalist plants in small kurgans in contrast to larger ones. We conclude that besides the well-known effect of enhancing habitat quality, increasing connectivity between fragments by restoring natural and semi-natural habitat patches would help to maintain grassland biodiversity.  相似文献   

16.
《Acta Oecologica》2007,31(1):48-53
Habitat fragmentation may modify ecological interactions such as herbivory, and these changes can impinge upon plant fitness. Through a natural experiment, we evaluated if herbivory, foliar survival and shoot growth of the evergreen tree Aristotelia chilensis differ between a continuous forest (600 ha) and small fragments (∼3 ha) of the Maulino forest. From September 2002, we monthly recorded leaf emergence, area lost to herbivores and survival in four cohorts of leaves. Although herbivory of A. chilensis was low overall (foliar area loss <12%), herbivory was higher in the continuous forest than in small fragments. Nevertheless, differences in herbivory hold only for the first cohort of leaves, which were the largest ones. At the end of the growing season, herbivory rates in the continuous forest and fragments converge for all cohorts. Except for the first cohort of leaves, whose survival was higher in the fragments than in the continuous forest, foliar survival and shoot growth was similar in the continuous forest and fragments, and there was no correlation between herbivory and foliar survival or shoot growth. Although Maulino forest fragmentation negatively affects the intensity of herbivory, this effect is only transient, affecting only leaves that emerge early in the season, and might not affect the vegetative fitness of A. chilensis adults. The consequences of changes in ecological interactions triggered by forest fragmentation ought to be assessed rather than inferred from variations in patterns of resource use.  相似文献   

17.
Four plants, Cyperus ochraceus, Eriocaulon compressum, Lythrum alatum, and Xyris jupicai, growing along the shoreline of an oligotrophic lake in north central Florida were sampled for nematodes. The nematodes recovered were placed in four trophic groups: bacterivores, herbivores, omnivores, and predators. When the nematodes on all plants were considered, 27% were bacterivores, 23% were herbivores, 7% were omnivores, and 43% were predators. Tripyla was the dominant predator and the dominant genus of all nematodes, and Malenchus was the dominant herbivore. Dominance was not clearly pronounced in the other trophic groups.  相似文献   

18.
Rampant deforestation has caused the loss and fragmentation of natural habitats, which has precipitated a global biodiversity crisis. Research on how land-use change contributes to a loss of biodiversity is urgently needed, especially in ecosystems that have undergone rapid anthropogenic changes. We sought to investigate the extent to which habitat loss, fragmentation, and habitat split (the separation of forest and aquatic habitats) negatively influenced taxonomic diversity, functional diversity, total abundance, and the individual abundances of five anuran species in the Brazilian Cerrado. We sampled anurans between December 2017 and March 2018 using pitfall traps at sites distributed along a gradient of habitat fragmentation/habitat split: unfragmented forest, forest fragments without habitat split, and forest fragments with habitat split. Forest cover was measured within a 1-km radius of each site. Sites within unfragmented forests had higher taxonomic and functional diversities than either fragment type. Taxonomic diversity was highly correlated with functional diversity, but we did not find a pattern to the loss of functional traits. Total anuran abundance and the abundances of Chiasmocleis albopunctata, Physalaemus cuvieri, and Rhinella diptycha were higher in unfragmented forests compared to forest fragments. No species was more abundant in fragments than in unfragmented forests. Our results indicate that the fragmentation of forests by agricultural land use is directly and indirectly responsible for the loss of taxonomic and functional diversity, as well as for reducing population sizes of ground-dwelling anurans. Although we did not find a distinct effect of habitat split on ground-dwelling anurans, our study underscores the importance of preserving continuous forest habitats for the maintenance of anuran diversity in the Cerrado.  相似文献   

19.
Understanding ecosystem functioning in a farmland context by considering the variety of ecological strategies employed by arthropods is a core challenge in ecology and conservation science. We adopted a functional approach in an assessment of the relationship between three functional plant groups (grasses, broad-leaves and legumes) and the arthropod community in winter wheat fields in a Mediterranean dryland context. We sampled the arthropod community as thoroughly as possible with a combination of suction catching and flight-interception trapping. All specimens were identified to the appropriate taxonomic level (family, genus or species) and classified according to their form of feeding: chewing-herbivores, sucking-herbivores, flower-consumers, omnivores, saprovores, parasitoids or predators. We found, a richer plant community favoured a greater diversity of herbivores and, in turn, a richness of herbivores and saprovores enhanced the communities of their natural enemies, which supports the classical trophic structure hypothesis. Grass cover had a positive effect on sucking-herbivores, saprovores and their natural enemies and is probably due to grasses’ ability to provide, either directly or indirectly, alternative resources or simply by offering better environmental conditions. By including legumes in agroecosystems we can improve the conservation of beneficial arthropods like predators or parasitoids, and enhance the provision of ecosystem services such as natural pest control.  相似文献   

20.
A decline in species number often occurs after forest fragmentation and habitat loss, which usually results in the loss of ecological functions and a reduction in functional diversity in the forest fragments. However, it is uncertain whether these lost ecological functions are consistently maintained throughout continuous forests, and so the importance of these functions in continuous forests remains unknown. Point counts were used to assess both the taxonomic and functional diversity of specialist and generalist birds from sampling in a continuous primary forest compared with forest fragments in order to investigate the responses of these groups to forest fragmentation. We also measured alpha and beta diversity. The responses of specialists and generalists were similar when we assessed all bird species but were different when only passerines were considered. When examining passerines we found lower total taxonomic beta diversity for specialists than for generalists in the continuous forest, while taxonomic beta diversity was higher in the fragmented forest and similar between bird groups. However, total functional beta‐diversity values indicated clearly higher trait regularity in continuous forest for specialists and higher trait regularity in fragments for generalists. Specialists showed significantly higher functional alpha diversity in comparison with generalists in the continuous forest, while both groups showed similar values in fragments. In passerines, species richness and alpha functional diversity of both specialist and generalist were explained by forest connectivity; but, only fragment size explained those parameters for specialist passerines. We suggest that considering subsets of the community with high similarity among species, as passerines, provides a better tool for understanding responses to forest fragmentation. Due to the regularity of specialists in continuous forest, their lost could highly affect functionality in forest fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号