首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《Cell》2023,186(12):2531-2543.e11
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
6.
7.
8.
RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.  相似文献   

9.
The DRADA gene in mammals encodes an A-to-I RNA editase, an adenosine deaminase that acts on pre-mRNAs to produce site specific inosines. DRADA has been shown to deaminate specific adenosine residues in a subset of glutamate and serotonin receptors, and this editing results in proteins of altered sequences and functional properties. DRADA thus plays a role in creating protein diversity. To study the evolutionary significance of this gene, we have characterized the genomic structure of DRADA from Fugu rubripes, and compared the protein sequences of DRADA from mammals, pufferfish and zebrafish. The DRADA gene from Fugu is three-fold compacted with respect to the human gene, and contains a novel intron within the large second coding exon. DRADA cDNAs were isolated from zebrafish and a second pufferfish, Tetraodon fluviatilis. Comparisons among fish, and between fish and mammals, of the protein sequences show that the catalytic domains are highly conserved for each gene, while the RNA binding domains vary within a single protein in their levels of conservation. Conservation within the Z DNA binding domain has also been assessed. Different levels of conservation among domains of different functional roles may reflect differences in editase substrate specificity and/or substrate sequence conservation.  相似文献   

10.
Guide RNAs are encoded in maxicircle and minicircle DNA of trypanosome mitochondria. They play a pivotal role in RNA editing, a process during which the nucleotide sequence of mitochondrial RNAs is altered by U-insertion and deletion. Guide RNAs vary in length from 35 to 78 nucleotides, which correlates with the variation in length of the three functionally important regions of which they are composed: (i) a 4–14 nucleotide anchor sequence embedded in the 5 region, which is complementary to a target sequence on the pre-edited RNA downstream of an editing domain, (ii) a middle part containing the editing information, which ranges from guiding the insertion of just one U into one site to that of the insertion of 32 Us into 10 sites, and (iii) a 5–24 nucleotide 3 terminal oligo [U] extension. Moreover, a variable uridylation site creates gRNAs containing a varying segment of editing information for the same domain. Comparison of different guide RNAs demonstrates that, besides the U-tail, they have no obvious common primary and secondary sequence motifs, each particular sequence being unique. The occurrence in vivo and the synthesis in vitro of chimeric molecules, in which a guide RNA is covalently linked through its 3 U-tail to an editing site of a pre-edited RNA, suggests that RNA editing occurs by consecutive transesterification reactions and is evidence that the guide RNAs not only provide the genetic information, but also the Us themselves.Abbreviations gRNA guide RNA  相似文献   

11.
12.
13.
14.
RNA editing at four sites in eag, a Drosophila voltage-gated potassium channel, results in the substitution of amino acids into the final protein product that are not encoded by the genome. These sites and the editing alterations introduced are K467R (Site 1, top of the S6 segment), Y548C, N567D and K699R (sites 2–4, within the cytoplasmic C-terminal domain). We mutated these residues individually and expressed the channels in Xenopus oocytes. A fully edited construct (all four sites) has the slowest activation kinetics and a paucity of inactivation, whereas the fully unedited channel exhibits the fastest activation and most dramatic inactivation. Editing Site 1 inhibits steady-state inactivation. Mutating Site 1 to the neutral residues resulted in intermediate inactivation phenotypes and a leftward shift of the peak current-voltage relationship. Activation kinetics display a Cole-Moore shift that is enhanced by RNA editing. Normalized open probability relationships for 467Q, 467R and 467K are superimposable, indicating little effect of the mutations on steady-state activation. 467Q and 467R enhance instantaneous inward rectification, indicating a role of this residue in ion permeation. Intracellular tetrabutylammonium blocks 467K significantly better than 467R. Block by intracellular, but not extracellular, tetraethylammonium interferes with inactivation. The fraction of inactivated current is reduced at higher extracellular Mg+2 concentrations, and channels edited at Site 1 are more sensitive to changes in extracellular Mg+2 than unedited channels. These results show that even a minor change in amino acid side-chain chemistry and size can have a dramatic impact on channel biophysics, and that RNA editing is important for fine-tuning the channel’s function.  相似文献   

15.
RNA editing in flowering plant mitochondria alters numerous C nucleotides in a given mRNA molecule to U residues. To investigate whether neighbouring editing sites can influence each other we analyzed in vitro RNA editing of two sites spaced 30 nt apart. Deletion and competition experiments show that these two sites carry independent essential specificity determinants in the respective upstream 20-30 nucleotides. However, deletion of a an upstream sequence region promoting editing of the upstream site concomitantly decreases RNA editing of the second site 50-70 nucleotides downstream. This result suggests that supporting cis-/trans-interactions can be effective over larger distances and can affect more than one editing event.  相似文献   

16.
17.
RNA editing in plants   总被引:3,自引:0,他引:3  
  相似文献   

18.
19.
20.
Slavov D  Clark M  Gardiner K 《Gene》2000,250(1-2):41-51
One type of RNA editing involves the deamination of adenosine (A) residues to inosines (I) at specific sites in specific pre-mRNAs. These inosines are subsequently read as guanosines by the ribosome, with potentially significant consequences for protein sequence. In mammals, two such A-to-I RNA editases are RED1, which edits some serotonin and glutamate receptors, and RED2, with unidentified substrates. To study the evolutionary conservation among these editases, we have isolated homologous genes from the Japanese pufferfish, Fugu rubripes. Fugu has two genes homologous to Red1 that are similar in size and organization and that show a fivefold compaction relative to the human gene; they differ, however, in their base compositional features. The Fugu gene for RED2 is unusually large, spanning more than 50 kb; within the largest intron, there is evidence for a novel gene on the opposite strand. Because of these unusual features, the partial genomic structure was determined for the mouse RED2 gene. A partial cDNA for RED1 was also isolated from zebrafish. Comparisons between fish and between fish and mammals of the protein sequences show that the catalytic domains are highly conserved for each gene, while the RNA-binding domains vary within a single protein in their levels of conservation. Different levels of conservation among domains of different functional roles may reflect differences in editase substrate specificity and/or substrate sequence conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号