首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TrpA1 regulates thermal nociception in Drosophila   总被引:1,自引:0,他引:1  
Pain is a significant medical concern and represents a major unmet clinical need. The ability to perceive and react to tissue-damaging stimuli is essential in order to maintain bodily integrity in the face of environmental danger. To prevent damage the systems that detect noxious stimuli are therefore under strict evolutionary pressure. We developed a high-throughput behavioral method to identify genes contributing to thermal nociception in the fruit fly and have reported a large-scale screen that identified the Ca2+ channel straightjacket (stj) as a conserved regulator of thermal nociception. Here we present the minimal anatomical and neuronal requirements for Drosophila to avoid noxious heat in our novel behavioral paradigm. Bioinformatics analysis of our whole genome data set revealed 23 genes implicated in Ca2+ signaling that are required for noxious heat avoidance. One of these genes, the conserved thermoreceptor TrpA1, was confirmed as a bona fide “pain” gene in both adult and larval fly nociception paradigms. The nociceptive function of TrpA1 required expression within the Drosophila nervous system, specifically within nociceptive multi-dendritic (MD) sensory neurons. Therefore, our analysis identifies the channel TRPA1 as a conserved regulator of nociception.  相似文献   

2.
Animals detect heat using thermosensitive transient receptor potential (TRP) channels. In insects, these include TRP ankyrin 1 (TRPA1), which in mosquitoes is crucial for noxious heat avoidance and thus is an appealing pest control target. However, the molecular basis for heat-evoked activation has not been fully elucidated, impeding both studies of the molecular evolution of temperature sensitivity and rational design of inhibitors. In TRPA1 and other thermosensitive TRPs, the N-terminal cytoplasmic ankyrin repeat (AR) domain has been suggested to participate in heat-evoked activation, but the lack of a structure containing the full AR domain has hindered our mechanistic understanding of its role. Here, we focused on elucidating the structural basis of apparent temperature threshold determination by taking advantage of two closely related mosquito TRPA1s from Aedes aegypti and Culex pipiens pallens with 86.9% protein sequence identity but a 10 °C difference in apparent temperature threshold. We identified two positions in the N-terminal cytoplasmic AR domain of these proteins, E417 (A. aegypti)/Q414 (C. pipiens) and R459 (A. aegypti)/Q456 (C. pipiens), at which a single exchange of amino acid identity was sufficient to change apparent thresholds by 5 to 7 °C. We further found that the role of these positions is conserved in TRPA1 of a third related species, Anopheles stephensi. Our results suggest a structural basis for temperature threshold determination as well as for the evolutionary adaptation of mosquito TRPA1 to the wide range of climates inhabited by mosquitoes.  相似文献   

3.
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.  相似文献   

4.
Citronellal, a well-known plant-derived mosquito repellent, was previously reported to repel Drosophila melanogaster via olfactory pathways involving but not directly activating Transient Receptor Potential Ankyrin 1 (TRPA1). Here, we show that citronellal is a direct agonist for Drosophila and human TRPA1s (dTRPA1 and hTRPA1) as well as Anopheles gambiae TRPA1 (agTRPA1). Citronellal-induced activity is isoform-dependent for Drosophila and Anopheles gambiae TRPA1s. The recently identified dTRPA1(A) and ag-TRPA1(A) isoforms showed citronellal-provoked currents with EC50s of 1.0 ± 0.2 and 0.1 ± 0.03 mM, respectively, in Xenopus oocytes, while the sensitivities of TRPA1(B)s were much inferior to those of TRPA1(A)s. Citronellal dramatically enhanced the feeding-inhibitory effect of the TRPA1 agonist N-methylmaleimide (NMM) in Drosophila at an NMM concentration that barely repels flies. Thus, citronellal can promote feeding deterrence of fruit flies through direct action on gustatory dTRPA1, revealing the first isoform-specific function for TRPA1(A).  相似文献   

5.
Epithelia express oxidative antimicrobial protection that uses lactoperoxidase (LPO), hydrogen peroxide (H2O2), and thiocyanate to generate the reactive hypothiocyanite. Duox1 and Duox2, found in epithelia, are hypothesized to provide H2O2 for use by LPO. To investigate the regulation of oxidative LPO-mediated host defense by bacterial and inflammatory stimuli, LPO and Duox mRNA were followed in differentiated primary human airway epithelial cells challenged with Pseudomonas aeruginosa flagellin or IFN-γ. Flagellin upregulated Duox2 mRNA 20-fold, but upregulated LPO mRNA only 2.5-fold. IFN-γ increased Duox2 mRNA 127-fold and upregulated LPO mRNA 10-fold. DuoxA2, needed for Duox2 activity, was also upregulated by flagellin and IFN-γ. Both stimuli increased H2O2 synthesis and LPO-dependent killing of P. aeruginosa. Reduction of Duox1 by siRNA showed little effect on basal H2O2 production, whereas Duox2 siRNA markedly reduced basal H2O2 production and resulted in an 8-fold increase in Nox4 mRNA. In conclusion, large increases in Duox2-mediated H2O2 production seem to be coordinated with increases in LPO mRNA and, without increased LPO, H2O2 levels in airway secretion are expected to increase substantially. The data suggest that Duox2 is the major contributor to basal H2O2 synthesis despite the presence of greater amounts of Duox1.  相似文献   

6.
In the thyroid gland Duox2-derived H2O2 is essential for thyroid hormone biosynthesis. Several patients were identified with partial or severe iodide organification defects caused by mutation in the gene for Duox2 or its maturation factor, DuoxA2. A Duox2-deficient (Duox2thyd) mouse model enabled in vivo investigation of its critical function in thyroid tissues, but its roles proposed in host defense or other innate responses in nonthyroid tissues remain less certain. These mice carry a spontaneous DUOX2 missense mutation, a T→G transversion, in exon 16 that changes the highly conserved valine 674 to glycine and results in severe congenital hypothyroidism. The exact mechanism underlying the effects of the V674G mutation has not been elucidated at the molecular or cellular level. To determine how the V674G mutation leads to congenital hypothyroidism, we introduced the same mutation into human Duox2 or Duox1 cDNAs and expressed them in HEK-293 cells stably expressing the corresponding DuoxA proteins. We found that the valine→glycine mutant Duox proteins fail to produce H2O2, lose their plasma membrane localization pattern, and are retained within the endoplasmic reticulum. The Duox2 mutant binds to DuoxA2, but appears to be unstable owing to this retention. Immunohistochemical staining of Duox2 in murine salivary gland ducts showed that Duox2 in mutant mice loses its condensed apical plasma membrane localization pattern characteristic of wild-type Duox2 and accumulates in punctate vesicular structures within cells. Our findings demonstrate that changing the highly conserved valine 674 in Duox2 leads to impaired subcellular targeting and reactive oxygen species release required for hormonogenesis, resulting in congenital hypothyroidism.  相似文献   

7.
The transient receptor potential ankyrin 1 (TRPA1) channel is activated by noxious stimuli including chemical irritants and endogenous inflammatory mediators. Antagonists of this channel are currently being investigated for use as therapeutic agents for treating pain, airway disorders, and itch. A novel azabenzofuran series was developed that demonstrated in vitro inhibition of allyl isothiocyanate (AITC)-induced 45Ca2+ uptake with nanomolar potencies against both human and rat TRPA1. From this series, compound 10 demonstrated in vivo target coverage in an AITC-induced flinching model in rats while providing unbound plasma concentrations up to 16-fold higher than the TRPA1 rat IC50.  相似文献   

8.
EMBO J (2013) 32 23, 3017–3028 10.1038/emboj.2013.224; published online October182013Commensal gut bacteria benefit their host in many ways, for instance by aiding digestion and producing vitamins. In a new study in The EMBO Journal, Jones et al (2013) report that commensal bacteria can also promote intestinal epithelial renewal in both flies and mice. Interestingly, among commensals this effect is most specific to Lactobacilli, the friendly bacteria we use to produce cheese and yogurt. Lactobacilli stimulate NADPH oxidase (dNox/Nox1)-dependent ROS production by intestinal enterocytes and thereby activate intestinal stem cells.The human gut contains huge numbers of bacteria (∼1014/person) that play beneficial roles for our health, including digestion, building our immune system and competing with harmful microbes (Sommer and Backhed, 2013). Both commensal and pathogenic bacteria can elicit antimicrobial responses in the intestinal epithelium and also stimulate epithelial turnover (Buchon et al, 2013; Sommer and Backhed, 2013). In contrast to gut pathogens, relatively little is known about how commensal bacteria influence intestinal turnover. In a simple yet elegant study reported recently in The EMBO Journal, Jones et al (2013) show that among several different commensal bacteria tested, only Lactobacilli promoted much intestinal stem cell (ISC) proliferation, and it did so by stimulating reactive oxygen species (ROS) production. Interestingly, the specific effect of Lactobacilli was similar in both Drosophila and mice. In addition to distinguishing functional differences between species of commensals, this work suggests how the ingestion of Lactobacillus-containing probiotic supplements or food (e.g., yogurt) might support epithelial turnover and health.In both mammals and insects, ISCs give rise to intestinal enterocytes, which not only absorb nutrients from the diet but must also interact with the gut microbiota (Jiang and Edgar, 2012). The metazoan intestinal epithelium has developed conserved responses to enteric bacteria, for instance the expression of antimicrobial peptides (AMPs; Gallo and Hooper, 2012; Buchon et al, 2013), presumably to kill harmful bacteria while allowing symbiotic commensals to flourish. In addition to AMPs, intestinal epithelial cells use NADPH family oxidases to generate ROS that are used as microbicides (Lambeth and Neish, 2013). High ROS levels during enteric infections likely act non-discriminately against both commensals and pathogens, but controlled, low-level ROS can act as signalling molecules that regulate various cellular processes including proliferation (Lambeth and Neish, 2013). In flies, exposure to pathogenic Gram-negative bacteria has been reported to result in ROS (H2O2) production by an enzyme called dual oxidase (Duox; Ha et al, 2005). Duox activity in the fly intestine (and likely also the mammalian one) has recently been discovered to be stimulated by uracil secretion by pathogenic bacteria (Lee et al, 2013). In the mammalian intestine another enzyme, NADPH oxidase (Nox), has also been shown to produce ROS in the form of superoxide (O2), in this case in response to formylated bacterial peptides (Lambeth and Neish, 2013). A conserved role for Nox in the Drosophila intestinal epithelium had not until now been explored.Jones et al (2013) checked seven different commensal bacterial to see which would stimulate ROS production by the fly''s intestinal epithelium, and found that only one species, a Gram-positive Lactobacillus, could stimulate significant production of ROS in intestinal enterocytes. Five bacterial species were checked in mice or cultured intestinal cells, and again it was a Lactobacillus that generated the strongest ROS response. Although not all of the most prevalent enteric bacteria were assayed, those others that were—such as E. coli—induced only mild, barely detectable levels of ROS in enterocytes. Surprisingly, although bacteria pathogenic to Drosophila, like Erwinia caratovora, were expected to stimulate ROS production via Duox, Jones et al (2013) did not observe this using the ROS detecting dye hydrocyanine-Cy3, or a ROS-sensitive transgene reporter, Glutatione S-transferase-GFP, in flies. Further, Jones et al (2013) found that genetically suppressing Nox in either Drosophila or mice decreased ROS production after Lactobacillus ingestion. Consistent with the important role of Nox, Duox appeared not to be required for ROS production after Lactobacillus ingestion. In addition, Jones et al (2013) found that Lactobacilli also promoted DNA replication—a metric of cell proliferation and epithelial renewal—in the fly''s intestine, and that this was also ROS- and Nox-dependent. Again, the same relationship was found in the mouse small intestine. Together, these results suggest a conserved mechanism by which Lactobacilli can stimulate Nox-dependent ROS production in intestinal enterocytes and thereby promote ISC proliferation and enhance gut epithelial renewal.In the fly midgut, uracil produced by pathogenic bacteria can stimulate Duox-dependent ROS production, which is thought to act as a microbicide (Lee et al, 2013), and can also promote ISC proliferation (Buchon et al, 2009). However, Duox-produced ROS may also damage the intestinal epithelium itself and thereby promote epithelial regeneration indirectly through stress responses. In this disease scenario, ROS appears to be sensed by the stress-activated Jun N-terminal Kinase (JNK; Figure 1A), which can induce pro-proliferative cytokines of the Leptin/IL-6 family (Unpaireds, Upd1–3) (Buchon et al, 2009; Jiang et al, 2009). These cytokines activate JAK/STAT signalling in the ISCs, promoting their growth and proliferation, and accelerating regenerative repair of the gut epithelium (Buchon et al, 2009; Jiang et al, 2009). It is also possible, however, that low-level ROS, or specific types of ROS (e.g., H2O2) might induce ISC proliferation directly by acting as a signal between enterocytes and ISCs. Since commensal Lactobacillus stimulates ROS production via Nox rather than Duox, this might be a case in which a non-damaging ROS signal promotes intestinal epithelial renewal without stress signalling or a microbicidal effect (Figure 1B). However, Jones et al (2013) stopped short of ruling out a role for oxidative damage, cell death or stress signalling in the intestinal epithelium following colonization by Lactobacilli, and so these parameters must be checked in future studies. Perhaps even the friendliest symbiotes cause a bit of ‘healthy'' damage to the gut lining, stimulating it to refresh and renew. Whether damage-dependent or not, the stimulation of Drosophila ISC proliferation by commensals and pathogens alike appears to involve the same cytokine (Upd3; Buchon et al, 2009), and so some of the differences between truly pathogenic and ‘friendly'' gut microbes might be ascribed more to matters of degree than qualitative distinctions. Future studies exploring exactly how different types of ROS signals stimulate JNK activity, gut cytokine expression and epithelial renewal should be able to sort this out, and perhaps help us learn how to better manage the ecosystems in our own bellies. From the lovely examples reported by Jones et al (2013), an experimental back-and-forth between the Drosophila and mouse intestine seems an informative way to go.Open in a separate windowFigure 1Metazoan intestinal epithelial responses to commensal and pathogenic bacteria. (A) High reactive oxygen species (ROS) levels generated by dual oxidase (Duox) in response to uracil secretion by pathogenic bacteria. (B) Low ROS levels generated by NADPH oxidase (Nox) in response to commensal bacteria. In addition to acting as a microbiocide, ROS in flies may stimulate JNK signaling and cytokine (Upd 1–3) expression in enterocytes, thereby stimulating ISC proliferation and epithelial turnover or regeneration. Whether this stimulation required damage to or loss of enterocytes has yet to be explored.  相似文献   

9.
Intracellular growth and pathogenesis of Chlamydia species is controlled by the availability of tryptophan, yet the complete biosynthetic pathway for l‐Trp is absent among members of the genus. Some representatives, however, preserve genes encoding tryptophan synthase, TrpAB – a bifunctional enzyme catalyzing the last two steps in l‐Trp synthesis. TrpA (subunit α) converts indole‐3‐glycerol phosphate into indole and glyceraldehyde‐3‐phosphate (α reaction). The former compound is subsequently used by TrpB (subunit β) to produce l‐Trp in the presence of l‐Ser and a pyridoxal 5′‐phosphate cofactor (β reaction). Previous studies have indicated that in Chlamydia, TrpA has lost its catalytic activity yet remains associated with TrpB to support the β reaction. Here, we provide detailed analysis of the TrpAB from C. trachomatis D/UW‐3/CX, confirming that accumulation of mutations in the active site of TrpA renders it enzymatically inactive, despite the conservation of the catalytic residues. We also show that TrpA remains a functional component of the TrpAB complex, increasing the activity of TrpB by four‐fold. The side chain of non‐conserved βArg267 functions as cation effector, potentially rendering the enzyme less susceptible to the solvent ion composition. The observed structural and functional changes detected herein were placed in a broader evolutionary and genomic context, allowing identification of these mutations in relation to their trp gene contexts in which they occur. Moreover, in agreement with the in vitro data, partial relaxation of purifying selection for TrpA, but not for TrpB, was detected, reinforcing a partial loss of TrpA functions during the course of evolution.  相似文献   

10.
Reactive oxygen species (ROS) function in a range of physiological processes such as growth, metabolism and signaling, and also have a pathological role. Recent research highlighted the requirement for ROS generated by dual oxidase (DUOX) in host-defence responses in innate immunity and inflammatory disorders such as inflammatory bowel disease (IBD), but in vivo evidence to support this has, to date, been lacking. In order to investigate the involvement of Duox in gut immunity, we characterized the zebrafish ortholog of the human DUOX genes. Zebrafish duox is highly expressed in intestinal epithelial cells. Knockdown of Duox impaired larval capacity to control enteric Salmonella infection.  相似文献   

11.
TRPM8 (transient receptor potential M8) and TRPA1 (transient receptor potential A1) are cold-temperature-sensitive nociceptors expressed in sensory neurons but their behaviour in neuronal cells is poorly understood. Therefore DNA expression constructs containing human TRPM8 or TRPA1 cDNAs were transfected into HEK (human embryonic kidney cells)-293 or SH-SY5Y neuroblastoma cells and G418 resistant clones analysed for effects of agonists and antagonists on intracellular Ca2+ levels. Approximately 51% of HEK-293 and 12% of SH-SY5Y cell clones expressed the transfected TRP channel. TRPM8 and TRPA1 assays were inhibited by probenecid, indicating the need to avoid this agent in TRP channel studies. A double-residue mutation in ICL-1 (intracellular loop-1) of TRPM8 (SV762,763EL, mimicking serine phosphorylation) or one in the C-terminal tail region (FK1045,1046AG, a lysine knockout) retained sensitivity to agonists (WS 12, menthol) and antagonist {AMTB [N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide]}. SNP (single nucleotide polymorphism) variants in TRPA1 ICL-1 (R797T, S804N) and TRPA1 fusion protein containing C-terminal (His)10 retained sensitivity to agonists (cinnamaldehyde, allyl-isothiocyanate, carvacrol, eugenol) and antagonists (HC-030031, A967079). One SNP variant, 797T, possessed increased sensitivity to agonists. TRPA1 became repressed in SH-SY5Y clones but was rapidly rescued by Src-family inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Conversely, TRPM8 in SH-SY5Y cells was inhibited by PP2. Further studies utilizing SH-SY5Y may identify structural features of TRPA1 and TRPM8 involved in conferring differential post-translational regulation.  相似文献   

12.
Ixodes scapularis ticks transmit a wide array of human and animal pathogens including Borrelia burgdorferi; however, how tick immune components influence the persistence of invading pathogens remains unknown. As originally demonstrated in Caenorhabditis elegans and later in Anopheles gambiae, we show here that an acellular gut barrier, resulting from the tyrosine cross-linking of the extracellular matrix, also exists in I. scapularis ticks. This dityrosine network (DTN) is dependent upon a dual oxidase (Duox), which is a member of the NADPH oxidase family. The Ixodes genome encodes for a single Duox and at least 16 potential peroxidase proteins, one of which, annotated as ISCW017368, together with Duox has been found to be indispensible for DTN formation. This barrier influences pathogen survival in the gut, as an impaired DTN in Doux knockdown or in specific peroxidase knockdown ticks, results in reduced levels of B. burgdorferi persistence within ticks. Absence of a complete DTN formation in knockdown ticks leads to the activation of specific tick innate immune pathway genes that potentially resulted in the reduction of spirochete levels. Together, these results highlighted the evolution of the DTN in a diverse set of arthropod vectors, including ticks, and its role in protecting invading pathogens like B. burgdorferi. Further understanding of the molecular basis of tick innate immune responses, vector-pathogen interaction, and their contributions in microbial persistence may help the development of new targets for disrupting the pathogen life cycle.  相似文献   

13.
Acute gout attacks produce severe joint pain and inflammation associated with monosodium urate (MSU) crystals leading to oxidative stress production. The transient potential receptor ankyrin 1 (TRPA1) is expressed by a subpopulation of peptidergic nociceptors and, via its activation by endogenous reactive oxygen species, including hydrogen peroxide (H2O2), contributes to pain and neurogenic inflammation. The aim of this study was to investigate the role of TRPA1 in hyperalgesia and inflammation in a model of acute gout attack in rodents. Inflammatory parameters and mechanical hyperalgesia were measured in male Wistar rats and in wild-type (Trpa1+/+) or TRPA1-deficient (Trpa1−/−) male mice. Animals received intra-articular (ia, ankle) injection of MSU. The role of TRPA1 was assessed by receptor antagonism, gene deletion or expression, sensory fiber defunctionalization, and calcitonin gene-related peptide (CGRP) release. We found that nociceptor defunctionalization, TRPA1 antagonist treatment (via ia or oral administration), and Trpa1 gene ablation abated hyperalgesia and inflammatory responses (edema, H2O2 generation, interleukin-1β release, and neutrophil infiltration) induced by ia MSU injection. In addition, we showed that MSU evoked generation of H2O2 in synovial tissue, which stimulated TRPA1 producing CGRP release and plasma protein extravasation. The MSU-elicited responses were also reduced by the H2O2-detoxifying enzyme catalase and the reducing agent dithiothreitol. TRPA1 activation by MSU challenge-generated H2O2 mediates the entire inflammatory response in an acute gout attack rodent model, thus strengthening the role of the TRPA1 receptor and H2O2 production as potential targets for treatment of acute gout attacks.  相似文献   

14.
15.
Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1) is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.  相似文献   

16.
The transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable, nonselective cation channel mainly expressed in a subset of nociceptive neurons. TRPA1 functions as a cellular sensor detecting mechanical, chemical, and thermal stimuli. Because TRPA1 is considered to be a key player in nociception and inflammatory pain, TRPA1 antagonists have been developed as analgesic agents. Recently, by utilizing species differences, we identified the molecular basis of the antagonistic action of A967079, one of the most potent mammalian TRPA1 antagonists. Here, we show a unique effect of A967079 on TRPA1 from diverse vertebrate species, i.e. it acts as an agonist but not as an antagonist for chicken and frog TRPA1s. By characterizing chimeric channels of human and chicken TRPA1s, as well as point mutants, we found that a single specific amino acid residue located within the putative fifth transmembrane domain was involved in not only the stimulatory but also the inhibitory actions of A967079. AP18, structurally related to A967079, exerted similar pharmacological properties to A967079. Our findings and previous reports on species differences in the sensitivity to TRPA1 antagonists supply useful information in the search for novel analgesic medicines targeting TRPA1.  相似文献   

17.
In gastrointestinal (GI) physiology, anion and fluid secretion is an important function for host defense and is induced by changes in the luminal environment. The transient receptor potential A1 (TRPA1) channel is considered to be a chemosensor in several sensory tissues. Although the function of TRPA1 has been studied in GI motility, its contribution to the transepithelial ion transport system has rarely been discussed. In the present study, we investigated the secretory effect of the potential TRPA1 agonist allyl isothiocyanate (AITC) in rat and human colon using an Ussing chamber. The mucosal application of AITC (10(-6)-10(-3) M) induced Cl(-) and HCO(3)(-) secretion in a concentration-dependent manner, whereas the serosal application induced a significantly weaker effect. AITC-evoked anion secretion was attenuated by tissue pretreatment with piroxicam and prostaglandin (PG) E(2); however, this secretion was not affected by TTX, atropine, or extracellular Ca(2+) depletion. These experiments indicate that TRPA1 activation induces anion secretion through PG synthesis, independent of neural pathways in the colon. Further analysis also indicates that AITC-evoked anion secretion is mediated mainly by the EP(4) receptor subtype. The magnitude of the secretory response exhibited segmental heterogeneity in rat colon. Real-time PCR analysis showed the segmental difference was corresponding to the differential expression of EP(4) receptor and cyclooxygenase-1 and -2. In addition, RT-PCR, in situ hybridization, and immunohistochemical studies showed TRPA1 expression in the colonic epithelia. Therefore, we conclude that the activation of TRPA1 in colonic epithelial cells is likely involved in the host defense mechanism through rapid anion secretion.  相似文献   

18.
Brazilian green propolis is a popular health supplement because of its various biological properties. The ethanol extract of Brazilian green propolis (EEBP) is characteristic for its herb-like smell and unique pungent taste. However, the ingredients responsible for its pungency have not yet been identified. This study provides the first evidence that artepillin C is the main pungent ingredient in EEBP and that it potently activates human transient receptor potential ankyrin 1 (TRPA1) channels. EEBP was fractionated using column chromatography with a step gradient elution of an ethanol-water solution, and the fractions having the pungent taste were determined by sensory tests. HPLC analysis revealed that the pungent fraction was composed primarily of artepillin C, a prenylated derivative of cinnamic acid. Artepillin C was also identified as the pungent compound of EEBP by organoleptic examiners. Furthermore, the effects of artepillin C and other cinnamic acids found in EEBP on TRPA1 channels were examined by calcium imaging and plate reader-based assays in human TRPA1-expressing cells to investigate the molecular mechanisms underlying their pungent tastes. Artepillin C and baccharin activated the TRPA1 channel strongly, whereas drupanin caused a slight activation and p-coumaric acid showed no activation. Because the EC50 values of artepillin C, baccharin, and allyl isothiocyanate were 1.8 µM, 15.5 µM, and 6.2 µM, respectively, artepillin C was more potent than the typical TRPA1 agonist allyl isothiocyanate. These findings strongly indicate that artepillin C is the main pungent ingredient in EEBP and stimulates a pungent taste by activating TRPA1 channels.  相似文献   

19.
Glucosylsphingosine (GS) is an endogenous sphingolipid that specifically accumulates in the skin of patients with atopic dermatitis (AD). Notably, it was recently found that GS can induce itch sensation by activating serotonin receptor 2A and TRPV4 ion channels. However, it is still uncertain whether other molecules are involved in GS-induced itch sensation. Therefore, by using the calcium imaging technique, we investigated whether serotonin receptor 2 – specifically 2A and 2B – can interact with TRPV1 and TRPA1, because these are representative ion channels in the transmission of itch. As a result, it was found that GS did not activate TRPV1 or TRPA1 per se. Moreover, cells expressing both serotonin receptor 2 and TRPV1 did not show any changes in calcium responses. However, enhanced calcium responses were observed in cells expressing serotonin receptor 2 and TRPA1, suggesting a possible interaction between these two molecules. Similar synergistic effects were also observed in cells expressing serotonin receptor 2 and TRPA1, but not TRPV1. Furthermore, a phospholipase C inhibitor (U73122) and a store-operated calcium entry blocker (SKF96365) significantly reduced GS-induced responses in cells expressing both serotonin receptor 2 and TRPA1, but not with pre-treatment with a Gβγ-complex blocker (gallein). Therefore, we propose a putative novel pathway for GS-induced itch sensation, such that serotonin receptor 2 could be coupled to TRPA1 but not TRPV1 in sensory neurons.  相似文献   

20.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with 125I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号