首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Increased expression of metalloprotease-disintegrin ADAM12 is a hallmark of several pathological conditions, including cancer, cardiovascular disease, and certain inflammatory diseases of the central nervous system or the muscoskeletal system. We show that transforming growth factor β1 (TGFβ1) is a potent inducer of ADAM12 mRNA and protein in mouse fibroblasts and in mouse and human mammary epithelial cells. Induction of ADAM12 is detected within 2 h of treatment with TGFβ1, is Smad2/Smad3-dependent, and is a result of derepression of the Adam12 gene. SnoN, a negative regulator of the TGFβ signaling pathway, is a master regulator of ADAM12 expression in response to TGFβ1 stimulation. Overexpression of SnoN in NIH3T3 cells reduces the magnitude of ADAM12 induction by TGFβ1 treatment. Down-regulation of SnoN expression by short hairpin RNA enhances TGFβ1-induced expression of ADAM12. In a panel of TGFβ1-responsive cancer cell lines with high expression of SnoN, induction of ADAM12 by TGFβ1 is significantly impaired, suggesting that the endogenous SnoN plays a role in regulating ADAM12 expression in response to TGFβ1. Identification of SnoN as a repressor of the ADAM12 gene should contribute to advances in the studies on the role of ADAM12 in tumor progression and in the development of other pathologies.  相似文献   

5.
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway.  相似文献   

6.
7.
Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo.  相似文献   

8.
9.
10.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that is strongly associated with a number of human diseases and birth defects, including cleft palate. Transforming growth factor (TGF) plays a significant role during mammalian palatogenesis. However, the epigenetic mechanism of transforming growth factors in the process of TCDD-induced cleft palate is unclear. The purpose of this research was to investigate the relationship and potential mechanism between TGF-β2/3 promoter DNA methylation and Smad signaling during TCDD-induced cleft palate. Pregnant C57BL/6N mice were exposed to 64 µg/kg TCDD on gestational day 10 (GD10) to establish the cleft palate model and palatal tissues of embryos were collected on GD13, GD14, and GD15 for subsequent experiments. TGF-β2/3 mRNA expression, TGF-β2/3 promoter methylation, and Smad signaling molecules expression were assessed in the palate of the two groups. The results showed that the incidence of cleft palate was 94.7% in the TCDD-treated group whereas no cleft palate was found in the control group. TCDD-treated group altered specific CpG sites of TGF-β2/3 promoter methylation. Compared to the control group, the proliferation of mouse embryonic palate mesenchymal stromal cells (MEPM), the expressions of TGF-β2/3, p-Smad2, and Smad4 were all reduced, while the expression of Smad7 was significantly increased in the atAR group. Smad signaling was downregulated by TCDD. Therefore, we suggest that TGF-β2/3 promoter methylation and Smad signaling may be involved in TCDD-induced cleft palate formation in fetal mice.  相似文献   

11.
12.
Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis.  相似文献   

13.

Background

Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs.

Methods

BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin (α-SMA) and flow cytometry was used to assay for α-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments, we investigated the role of TGFβ2 in BEC-HLF co-cultures using monoclonal antibody inhibition.

Results

Expression of α-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs, but not different than α-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less α-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGFβ2 led to similar expression of α-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone.

Conclusion

These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGFβ2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.  相似文献   

14.
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.  相似文献   

15.
Plasminogen activator inhibitor-1 (PAI-1) is a multifunctional glycoprotein that plays a critical role in the pathogenesis of chronic kidney and cardiovascular diseases. Although transforming growth factor (TGF)-β1 is a known inducer of PAI-1, how it controls PAI-1 expression remains enigmatic. Here we investigated the mechanism underlying TGF-β1 regulation of PAI-1 in kidney tubular epithelial cells (HKC-8). Surprisingly, overexpression of Smad2 or Smad3 in HKC-8 cells blocked PAI-1 induction by TGF-β1, whereas knockdown of them sensitized the cells to TGF-β1 stimulation, suggesting that Smad signaling is not responsible for PAI-1 induction. Blockade of several TGF-β1 downstream pathways such as p38 MAPK or JNK, but not phosphatidylinositol 3-kinase/Akt and ERK1/2, only partially inhibited PAI-1 expression. TGF-β1 stimulated β-catenin activation in tubular epithelial cells, and ectopic expression of β-catenin induced PAI-1 expression, whereas inhibition of β-catenin abolished its induction. A functional T cell factor/lymphoid enhancer-binding factor-binding site was identified in the promoter region of the PAI-1 gene, which interacted with T cell factor upon β-catenin activation. Deletion or site-directed mutation of this site abolished PAI-1 response to β-catenin or TGF-β1 stimulation. Similarly, ectopic expression of Wnt1 also activated PAI-1 expression and promoter activity. In vivo, PAI-1 was induced in kidney tubular epithelia in obstructive nephropathy. Delivery of Wnt1 gene activated β-catenin and promoted PAI-1 expression after obstructive injury, whereas blockade of Wnt/β-catenin signaling by Dickkopf-1 gene inhibited PAI-1 induction. Collectively, these studies identify PAI-1 as a direct downstream target of Wnt/β-catenin signaling and demonstrate that PAI-1 induction could play a role in mediating the fibrogenic action of this signaling.  相似文献   

16.
A growing body of evidence supports that the epithelial-to-mesenchymal transition (EMT), which occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Transforming growth factor-β (TGF-β) is known to induce EMT in a number of cancer cell types; however, the mechanism underlying this transition process is not fully understood. In this study we have demonstrated that TGF-β upregulates the expression of tumor suppressor protein Par-4 (prostate apoptosis response-4) concomitant with the induction of EMT. Mechanistic investigations revealed that exogenous treatment with each TGF-β isoform upregulates Par-4 mRNA and protein levels in parallel levels of phosphorylated Smad2 and IκB-α increase. Disruption of TGF-β signaling by using ALK5 inhibitor, neutralizing TGF-β antibody or phosphoinositide 3-kinase inhibitor reduces endogenous Par-4 levels, suggesting that both Smad and NF-κB pathways are involved in TGF-β-mediated Par-4 upregulation. NF-κB-binding sites in Par-4 promoter have previously been reported; however, using chromatin immunoprecipitation assay we showed that Par-4 promoter region also contains Smad4-binding site. Furthermore, TGF-β promotes nuclear localization of Par-4. Prolonged TGF-β3 treatment disrupts epithelial cell morphology, promotes cell motility and induces upregulation of Snail, vimentin, zinc-finger E-box binding homeobox 1 and N-Cadherin and downregulation of Claudin-1 and E-Cadherin. Forced expression of Par-4, results in the upregulation of vimentin and Snail expression together with increase in cell migration. In contrast, small interfering RNA-mediated silencing of Par-4 expression results in decrease of vimentin and Snail expression and prevents TGF-β-induced EMT. We have also uncovered a role of X-linked inhibitor of apoptosis protein in the regulation of endogenous Par-4 levels through inhibition of caspase-mediated cleavage. In conclusion, our findings suggest that Par-4 is a novel and essential downstream target of TGF-β signaling and acts as an important factor during TGF-β-induced EMT.  相似文献   

17.
18.
TGFβ induces fibrosis in healing corneal wounds, and in vitro corneal keratocytes up-regulate expression of several fibrosis-related genes in response to TGFβ. Hyaluronan (HA) accumulates in healing corneas, and HA synthesis is induced by TGFβ by up-regulation of HA synthase 2. This study tested the hypothesis that HA acts as an extracellular messenger, enhancing specific fibrotic responses of keratocytes to TGFβ. HA synthesis inhibitor 4-methylumbelliferone (4MU) blocked TGFβ induction of HA synthesis in a concentration-dependent manner. 4MU also inhibited TGFβ-induced up-regulation of α-smooth muscle actin, collagen type III, and extra domain A-fibronectin. Chemical analogs of 4MU also inhibited fibrogenic responses in proportion to their inhibition of HA synthesis. 4MU, however, showed no effect on TGFβ induction of luciferase by the 3TP-Lux reporter plasmid. Inhibition of HA using siRNA to HA synthase 2 reduced TGFβ up-regulation of smooth muscle actin, fibronectin, and cell division. Similarly, brief treatment of keratocytes with hyaluronidase reduced TGFβ responses. These results suggest that newly synthesized cell-associated HA acts as an extracellular enhancer of wound healing and fibrosis in keratocytes by augmenting a limited subset of the cellular responses to TGFβ.  相似文献   

19.

Background

Myofibroblasts are the critical effector cells in the pathogenesis of pulmonary fibrosis which carries a high degree of morbidity and mortality. We have previously identified Type II TGFβ receptor interacting protein 1 (TRIP-1), through proteomic analysis, as a key regulator of collagen contraction in primary human lung fibroblasts—a functional characteristic of myofibroblasts, and the last, but critical step in the process of fibrosis. However, whether or not TRIP-1 modulates fibroblast trans-differentiation to myofibroblasts is not known.

Methods

TRIP-1 expression was altered in primary human lung fibroblasts by siRNA and plasmid transfection. Transfected fibroblasts were then analyzed for myofibroblast features and function such as α-SMA expression, collagen contraction ability, and resistance to apoptosis.

Results

The down-regulation of TRIP-1 expression in primary human lung fibroblasts induces α-SMA expression and enhances resistance to apoptosis and collagen contraction ability. In contrast, TRIP-1 over-expression inhibits α-SMA expression. Remarkably, the effects of the loss of TRIP-1 are not abrogated by blockage of TGFβ ligand activation of the Smad3 pathway or by Smad3 knockdown. Rather, a TRIP-1 mediated enhancement of AKT phosphorylation is the implicated pathway. In TRIP-1 knockdown fibroblasts, AKT inhibition prevents α-SMA induction, and transfection with a constitutively active AKT construct drives collagen contraction and decreases apoptosis.

Conclusions

TRIP-1 regulates fibroblast acquisition of phenotype and function associated with myofibroblasts. The importance of this finding is it suggests TRIP-1 expression could be a potential target in therapeutic strategy aimed against pathological fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号