首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua L. (sweetgum) and Pinus taeda L. (loblolly pine) seedlings were examined for individuals grown from seed under high (1000 mol·m-2·s-1) and low (250 mol·m-2·s-1) photosynthetic photon flux density at 350, 675 and 1000 l·l-1 CO2. At 8 weeks of age, half the seedlings in each CO2-irradiance treatment were subjected to a drying cycle which reduced plant water potential to about -2.5 MPa in the most stressed plants, while control plants remained well-watered (water potentials of -0.3 and -0.7 MPa for sweetgum and loblolly pine, respectively). During this stress cycle, whole seedling net photosynthesis, transpiration and stomatal conductance of plants from each CO2-irradiance-water treatment were measured under respective growth conditions.For both species, water stress effects on gas exchange were greatest under high irradiance conditions. Waterstressed plants had significantly lower photosynthesis rates than well-watered controls throughout most of the drying cycle, with the most severe inhibition occurring for low CO2, high irradiance-grown sweetgum seedlings. Carbon dioxide enrichment had little effect on gas exchange rates of either water-stressed or well-watered loblolly pine seedlings. In contrast, water stress effects were delayed for sweetgum seedlings grown at elevated CO2, particularly in the 1000 l·l-1 CO2, high irradiance treatment where net photosynthesis, transpiration and conductance of stressed plants were 60, 36 and 33% of respective control values at the end of the drying cycle. Development of internal plant water deficits was slower for stressed sweetgum seedlings grown at elevated CO2. As a result, these seedlings maintained higher photosynthetic rates over the drying cycle than stressed sweetgum seedlings grown at 350 l·l-1 CO2 and stressed loblolly pine seedlings grown at ambient and enriched CO2 levels. In addition, water-stressed sweetgum seedlings grown at elevated CO2 exhibited a substantial increase in water use efficiency.The results suggest that with the future increase in atmospheric CO2 concentration, sweetgum seedlings should tolerate longer exposure to low soil moisture, resulting in greater first year survival of seedlings on drier sites of abandoned fields in the North Carolina piedmont.  相似文献   

2.
Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were exposed to near ambient or elevated CO2 (average concentrations during the last growing season 446 versus 699 mol mol–1), combined with low or elevated O3 for three seasons. Ozone exposure during the last growing season (accumulated dose above threshold 0.06 mol mol–1) was 0.05 versus 26.13 mol mol–1 h. Needles of the youngest age class were harvested after the dormancy period. Ozone exposure decreased needle contents of chlorophyll a, chlorophyll b, and ascorbate, and resulted in a more oxidized total ascorbate and a more de-epoxidized xanthophyll cycle pool irrespective of the CO2 level. Trees under elevated CO2 had a more oxidized glutathione pool and lower chlorophyll a content. Contents of glutathione, tocopherol, and carotenoids were not affected by the CO2 or O3 treatments. There were no interactive effects between elevated CO2 and elevated O3 on any of the parameters measured. The results suggest that elevated atmospheric CO2 concentration does not compensate for ozone stress by increasing antioxidative capacity in ponderosa pine.  相似文献   

3.
Phaseolus vulgaris (cv. Hawkesbury Wonder) was grown over a range of NaCl concentrations (0–150 mM), and the effects on growth, ion relations and photosynthetic performance were examined. Dry and fresh weight decreased with increasing external NaCl concentration while the root/shoot ratio increased. The Cl- concentration of leaf tissue increased linearly with increasing external NaCl concentration, as did K+ concentration, although to a lesser degree. Increases in leaf Na+ concentration occurred only at the higher external NaCl concentrations (100 mM). Increases in leaf Cl- were primarily balanced by increases in K+ and Na+. X-ray microanalysis of leaf cells from salinized plants showed that Cl- concentration was high in both the cell vacuole and chloroplast-cytoplasm (250–300 mM in both compartments for the most stressed plants), indicating a lack of effective intracellular ion compartmentation in this species. Salinity had little effect on the total nitrogen and ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) content per unit leaf area. Chlorophyll per unit leaf area was reduced considerably by salt stress, however. Stomatal conductance declined substantially with salt stress such that the intercellular CO2 concentration (C i) was reduced by up to 30%. Salinization of plants was found to alter the 13C value of leaves of Phaseolus by up to 5 and this change agreed quantitatively with that predicted by the theory relating carbon-isotope fractionation to the corresponding measured intercellular CO2 concentration. Salt stress also brought about a reduction in photosynthetic CO2 fixation independent of altered diffusional limitations. The initial slope of the photosynthesis versus C i response declined with salinity stress, indicating that the apparent in-vivo activity of RuBP carboxylase was decreased by up to 40% at high leaf Cl- concentrations. The quantum yield for net CO2 uptake was also reduced by salt stress.Abbreviations and symbols A net CO2 assimilation rate - C a ambient CO2 concentration - C i intercellular CO2 concentration - RuBP ribulose-1,5-bisphosphate - 13C ratio of 13C to 12C relative to standard limestone  相似文献   

4.
We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 l CO2 l–1) and increased N deposition (0,30 and 90 kg ha–1 year–1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 l CO2 l–1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 l l–1. Remarkably, further CO2 enrichment to 560 l l–1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the slow growing H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 l CO2 l–1 compared to 280 l l–1 (again no further stimulation at 560 l l–1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of several of the traits studied here suggest that the largest responses to rising atmospheric CO2 are under way now or have already occurred and possible future responses to further increases in CO2 concentration are likely to be much smaller in these understory species.  相似文献   

5.
Soybean [Glycine max (L.) Merr. cv. Williams 82 and A3127] plants were grown in the field under long-term soil moisture deficit and irrigation to determine the effects of severe drought stress on the photosynthetic capacity of soybean leaves. Afternoon leaf water potentials, stomatal conductances, intercellular CO2 concentrations and CO2-assimilation rates for the two soil moisture treatments were compared during the pod elongation and seed enlargement stages of crop development. Leaf CO2-assimilation rates were measured with either ambient (340 l CO2 l–1) or CO2-enriched (1800 l CO2 l–1) air. Although seed yield and leaf area per plant were decreased an average of 48 and 31%, respectively, as a result of drought stress, leaf water potentials were reduced only an average of 0.27 MPa during the sampling period. Afternoon leaf CO2-assimilation rates measured with ambient air were decreased an average of 56 and 49% by soil moisture deficit for Williams 82 and A3127, respectively. The reductions in leaf photosynthesis of both cultivars were associated with similar decreases in leaf stomatal conductance and with small increases in leaf intercellular CO2 concentration. When the CO2-enriched air was used, similar afternoon leaf CO2-assimilation rates were found between the soil moisture treatments at each stage of crop development. These results suggest that photosynthetic capacity of soybean leaves is not reduced by severe soil moisture deficit when a stress develops gradually under field conditions.Abbreviations Ci intercellular CO2 concentrations - Aa rates of CO2 assimilation measured with ambient air - Ae rates of CO2 assimilation measured with CO2-enriched air - gs stomatal conductances - RuBPCase ribulose-1,5-bisphosphate carboxylase  相似文献   

6.
We tested the hypothesis that increased carbohydrate flux under elevatedCO2 regulates accelerated development using rice (Oryzasativa L. cv. Jarrah). Plants were grown either in flooded soil orsolution culture at either 360 or 700 L CO2L–1. Total dry mass, shoot elongation rates (SER),tiller appearance rates (TAR) and ethylene release from intact rice seedlingswere measured from 5 to 42 days after planting (DAP). At maturity, shoot andsheath length, tiller number and grain mass were also measured. ElevatedCO2 had a profound effect on growth, morphology and development andthe effects were more pronounced during the early growth phase. Total aboveground biomass increased at elevated CO2 and this was accounted for by enhanced tiller number. Grain yield was increased by 56% under elevated CO2mainly due to increased tiller number and hence panicle number. TAR and SERwereenhanced at elevated CO2 but SER increased only untill 25 DAP.Elevated CO2 stimulated a 2-3-fold increase in endogenous andACC-mediated ethylene release but the ACC concentration in the leaves waslittleaffected showing that rates of ACC synthesis matched its oxidation. Inhibitionof ethylene action by 1-aminocyclopropane (1-MCP) had a more pronouncedinhibitory effect on ethylene release in plants that were grown at 700 ascompared to 360 L CO2 L–1. Feedingsucrose to intact plants enhanced ethylene synthesis and these results areconsistent with the hypothesis that increased accumulation of sucrose atelevated CO2 may enhance expression of genes in the ethylenebiosynthetic pathway. We conclude that increase in ethylene release may becentral in promoting accelerated development under elevated CO2 andthis coincides with the release of auxiliary buds and accelerated rates oftiller appearance hence increased grain yield at elevated CO2.  相似文献   

7.
Responses of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) to an elevated atmospheric CO2 concentration were determined along with net CO2 uptake rates for the Crassulacean acid metabolism species Opuntia ficus-indica growing in open-top chambers. During the spring 13 months after planting, total daily net CO2 uptake of basal and first-order daughter cladodes was 28% higher at 720 than at 360 l CO2 l-1. The enhancement, caused mainly by higher CO2 assimilation during the early part of the night, was also observed during late summer (5 months after planting) and the following winter. The activities of Rubisco and PEPCase measured in vitro were both lower at the elevated CO2 concentration, particularly under the more favorable growth conditions in the spring and late summer. Enzyme activity in second-order daughter cladodes increased with cladode age, becoming maximal at 6 to 10 days. The effect ofelevated CO2 on Rubisco and PEPCase activity declined with decreasing irradiance, especially for Rubisco. Throughout the 13-month observation period, O. ficus-indica thus showed increased CO2 uptake when the atmospheric CO2 concentration was doubled despite lower activities of both carboxylating enzymes.  相似文献   

8.
The interaction of extreme temperature events with future atmospheric CO2 concentrations may have strong impacts on physiological performance of desert shrub seedlings, which during the critical establishment phase often endure temperature extremes in conjunction with pronounced drought. To evaluate the interaction of drought and CO2 on photosynthesis during heat stress, one-year-old Larrea tridentata[DC] Cov. seedlings were exposed to nine days of heat with midday air temperature maxima reaching 53 °C under three atmospheric CO2 concentrations (360, 550 and 700 mol mol–1) and two water regimes (well-watered and droughted). Photosynthetic gas exchange, chlorophyll fluorescence and water potential responses were measured prior to, during and one week following the high temperature stress event. Heat stress markedly decreased net photosynthetic rate (A net), stomatal conductance (g s), and the photochemical efficiency of photosystem II (F v/F m) in all plants except for well-watered L. tridentata grown in 700 mol mol–1 CO2. A net and g s remained similar to pre-stress levels in these plants. In droughted L. tridentata, A net was ca. 2× (in 550 mol mol–1 CO2) to 3× (in 700 mol mol–1 CO2) higher than in ambient-CO2-grown plants, while g s and F v/F m were similar and low in all CO2 treatments. Following heat stress, g s in all well-watered plants rose dramatically, exceeding pre-stress levels by up to 100%. In droughted plants, g s and A net rose only in plants grown at elevated CO2 following release from heat. This recovery response was strongest at 700 mol mol–1 CO2, which returned to A net and g s values similar to pre-heat following several days of recovery. Extreme heat diminished the photosynthetic down-regulation response to growth at elevated CO2 under well-watered conditions, similar to the action of drought. Ambient-CO2-grown L. tridentata did not show significant recovery of photosynthetic capacity (A \max and CE) after alleviation of temperature stress, especially when exposed to drought, while plants exposed to elevated CO2 appeared to be unaffected. These findings suggest that elevated CO2 could promote photosynthetic activity during critical periods of seedling establishment, and enhance the potential for L. tridentata to survive extreme high temperature events.  相似文献   

9.
We studied the responses of an aquatic microcosm in two different eutrophic conditions to elevated atmospheric CO2concentration. We used microcosms, consisting of Escherichia coli(bacteria), Tetrahymena thermophila(protozoa) and Euglena gracilis(algae), in salt solution with 50 and 500 mg l–1of proteose peptone (eutrophic and hypereutrophic conditions, respectively) under ambient and elevated CO2(1550±100 l l–1) conditions. The density of E. gracilisincreased significantly under elevated CO2in both eutrophic and hypereutrophic microcosms. In the eutrophic microcosm, the other elements were not affected by elevated CO2. In the hypereutrophic microcosm, however, the concentrations of ammonium and phosphate decreased significantly under elevated CO2. Furthermore, the density of T. thermophilawas maintained in higher level than that in the microcosm with ambient CO2and the density of E. coliwas decreased by CO2enrichment. Calculating the carbon biomasses of T. thermophilaand E. colifrom their densities, the changes in their biomasses by CO2enrichment were little as compared with large increase of E. graciliscarbon biomass converted from chlorophyll a. From the responses to elevated CO2in the subsystems of the hypereutrophic microcosm consisting of either one or two species, the increase of E. graciliswas a direct effect of elevated CO2, whereas the changes in the density of E. coliand T. thermophilaand the decreases in the concentration of ammonium and phosphate are considered to be indirect effects rather than direct effects of elevated CO2. The indirect effects of elevated CO2were prominent in the hypereutrophic microcosm.  相似文献   

10.
Lenssen  G. M.  Lamers  J.  Stroetenga  M.  Rozema  J. 《Plant Ecology》1993,(1):379-388
The growth response of Dutch salt marsh species (C3 and C4) to atmospheric CO2 enrichment was investigated. Tillers of the C3 speciesElymus athericus were grown in combinations of 380 and 720 11-1 CO2 and low (O) and high (300 mM NaCl) soil salinity. CO2 enrichment increased dry matter production and leaf area development while both parameters were reduced at high salinity. The relative growth response to CO2 enrichment was higher under saline conditions. Growth increase at elevated CO2 was higher after 34 than 71 days. A lower response to CO2 enrichment after 71 days was associated with a decreased specific leaf area (SLA). In two other experiments the effect of CO2 (380 and 720 11-1) on growth of the C4 speciesSpartina anglica was studied. In the first experiment total plant dry weight was reduced by 20% at elevated CO2. SLA also decreased at high CO2. The effect of elevated CO2 was also studied in combination with soil salinity (50 and 400 mM NaCl) and flooding. Again plant weight was reduced (10%) at elevated CO2, except under the combined treatment high salinity/non-flooded. But these effects were not significant. High salinity reduced total plant weight while flooding had no effect. Causes of the salinity-dependent effect of CO2 enrichment on growth and consequences of elevated CO2 for competition between C3 and C4 species are discussed.  相似文献   

11.
I. Nijs  I. Impens  T. Behaeghe 《Planta》1989,177(3):312-320
The relationship between leaf photosynthetic capacity (p n, max), net canopy CO2- and H2O-exchange rate (NCER and E t, respectively) and canopy dry-matter production was examined in Lollium perenne L. cv. Vigor in ambient (363±30 l· l-1) and elevated (631±43 l·l-1) CO2 concentrations. An open system for continuous and simultaneous regulation of atmospheric CO2 concentration and NCER and E t measurement was designed and used over an entire growth cycle to calculate a carbon and a water balance. While NCERmax of full-grown canopies was 49% higher at elevated CO2 level, stimulation of p n, max was only 46% (in spite of a 50% rise in one-sided stomatal resistance for water-vapour diffusion), clearly indicating the effect of a higher leaf-area index under high CO2 (approx. 10% in one growing period examined). A larger amount of CO2-deficient leaves resulted in higher canopy dark-respiration rates and higher canopy light compensation points. The structural component of the high-CO2 effect was therefore a disadvantage at low irradiance, but a far greater benefit at high irradiance. Higher canopy darkrespiration rates under elevated CO2 level and low irradiance during the growing period are the primary causes for the increase in dry-matter production (19%) being much lower than expected merely based on the NCERmax difference. While total water use was the same under high and low CO2 levels, water-use efficiency increased 25% on the canopy level and 87% on a leaf basis. In the course of canopy development, allocation towards the root system became greater, while stimulation of shoot dry-matter accumulation was inversely affected. Over an entire growing season the root/shoot production ratio was 22% higher under high CO2 concentration.Abbreviations and symbols C350 ambient CO2, 363±30 l·l-1 - C600 high CO2, 631±43 l·l-1 - c a atmospheric CO2 level - c i CO2 concentration in the intracellular spaces of the leaf - Et canopy evapotranspiration - I o canopy light compensation point - NCER canopy CO2-exchange rate - p n leaf photosynthetic rate - PPFD photosynthetic photon flux density - r a leaf boundary-layer resistance - RD canopy dark-respiration rate - r s stomatal resistance - WUE water use efficiency  相似文献   

12.
Rice (Oryza sativa L.) plantlets regenerated from callus (rice regenerants) were grownin vitro during the preparation stage either on a 1/4 strength N6 gellan gum (4 g l-1) medium without sucrose (SFM) or with 30 g l-1 sucrose (SCM), and under CO2 concentrations of 0.4, 2, 10, 50 or 100 mmol mol-1, a photoperiod of 24 h and a photosynthetic photon flux density (PPFD) of 125 mol m-2 s-1. Rice regenerants were also grownin vitro on SFM or SCM under CO2 concentration of 50 mmol mol-1, a photoperiod of 12 or 24 h and a PPFD of 80 or 125 mol m-2 s-1. All rice regenerants grew successfully on SFM under CO2 concentrations of 50 or 100 mmol mol-1. Increasing the CO2 concentration increased the survival percentage, shoot length and shoot and root dry weights of rice regenerants grown on SFM. Increasing CO2 concentration had no significant effect on the survival or growth of rice regenerants grown on SCM. Survival percentages of rice regenerants grown on SCM were less than 80% for each of the CO2 concentrations. A photoperiod of 24 h under CO2 enrichment improved the survival and growth of rice regenerants grown on SFM, and increased the survival percentage and shoot dry weight of rice regenerants grown on SCM.  相似文献   

13.
Four-year-old saplings of Scots pine (Pinus sylvestris) (L.) were exposed for 11 weeks in controlled-environment chambers to charcoad-filtered air, or to charcoal-filtered air supplemented with NH3 (40 g m–3), O3 (110 g m–3 during day/ 40 g m–3 during night) or NH3+O3. All treatments were carried out at ambient (259 L L–1) and at elevated CO2 concentration (700 L L–1). Total tree biomass, mycorrhizal infection, net CO2 assimilation (Pn), stomatal conductance (gs), transpiration of the shoots and NH3 metabolization of the needles were measured. In ambient CO2 (1) gaseous NH3 decreased mycorrhizal infection, without significantly affecting tree biomass or N concentration and it enhanced the activity of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in one-year-old needles; (2) ozone decreased mycorrhizal infection and the acitivity of GS in the needles, while it increased the activity og GDH; (3) exposure to NH3+O3 lessened the effects of single exposures to NH3 and O3 on reduction of mycorrhizal infection and on increase in GDH activity. Similar lessing effects on mycorrhizal infection as observed in trees exposed to NH3+O3 at ambient CO2, were measured in trees exposed to NH3+O3 at elevated CO2. Exposure to elevated CO2 without pollutants did not significantly affect any of the parameters studied, except for a decrease in the concentration of soluble proteins in the needles. Elevated CO2 _NH3 strongly decreased root branching and mycorrhizal infection and temporarily stimulated Pn and gs. The exposure to elevated CO2+NH3+O3 also transiently stimulated Pn. The possible mechanisms underlying and integrating these effects are discussed. Elevated CO2 clearly did not alleviate the negative effects of NH3 and O3 mycoorhiral infection. The significant reduction of mycorrhizal infection after exposure to NH3 or O3, observed before significant changes in gas exchange or growth occurred, suggest the use of mycorrhizal infection as an early indicator for NH3 and O3 induced stress.Abbreviations DW dry weight - FA filtered air - FAa filtered air at ambient CO2 - FAe filtered air at elevated CO2 - FW fresh weight - GDH glutamate dehydrogenase - GS glutamine synthetase - gs stomatal conductance - Pn net CO2 assimilation - RWR root weight ratio - SRL specific root length  相似文献   

14.
Plantago lanceolata and Trifolium repens were grown under ambient (400 μmol mol–1) and elevated (650 μmol mol–1) atmospheric CO2 conditions. Plants were inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and given a phosphorus supply in the form of bonemeal. Six sequential harvests were taken in order to determine whether the effect of elevated CO2 on internal mycorrhizal colonization and external hyphal production was independent of the stimulatory effect of elevated CO2 on plant growth. At a given time, elevated CO2 increased the percentage of root length colonized (RLC), the total length of colonized root and the external mycorrhizal hyphal (EMH) density and decreased the ratio of EMH to total length of colonized root. When plant size was taken into account, the CO2 effect on RLC and total length of colonized root was greatly reduced (and only apparent for early harvests in T. repens) and the effects on the EMH parameters disappeared. Root tissue P concentration was unchanged at elevated CO2, but there was a decrease in shoot P at the later harvests. There was no direct effect of elevated CO2 on P inflow for the earlier period (< 50 d) of the experiment. However, over the last period, there was a significant negative effect of elevated CO2 on P inflow for both species, independent of plant size. It is concluded that elevated CO2 had no direct effect on mycorrhizal colonization or external hyphal production, and that any observed effects on a time basis were due to faster growing plants at elevated CO2. However, for older plants, elevated CO2 had a direct negative effect on P inflow. This decrease in P inflow coincides with the observed decrease in shoot P concentration. This is discussed in terms of downregulation of photosynthesis often seen in elevated CO2 grown plants, and the potential for mycorrhizas (via external hyphal turnover) to alleviate the phenomenon. The direction for future research is highlighted, especially in relation to carbon flow to and storage in the soil.  相似文献   

15.
One and a half year-old Ginkgo saplings were grown for 2 years in 7 litre pots with medium fertile soil at ambient air CO2 concentration and at 700 μmol mol−1 CO2 in temperature and humidity-controlled cabinets standing in the field. In the middle of the 2nd season of CO2 enrichment, CO2 exchange and transpiration in response to CO2 concentration was measured with a mini-cuvette system. In addition, the same measurements were conducted in the crown of one 60-year-old tree in the field. Number of leaves/tree was enhanced by elevated CO2 and specific leaf area decreased significantly.CO2 compensation points were reached at 75–84 μmol mol−1 CO2. Gas exchange of Ginkgo saplings reacted more intensively upon CO2 than those of the adult Ginkgo. On an average, stomatal conductance decreased by 30% as CO2 concentration increased from 30 to 1000 μmol mol−1 CO2. Water use efficiency of net photosynthesis was positively correlated with CO2 concentration levels. Saturation of net photosynthesis and lowest level of stomatal conductance was reached by the leaves of Ginkgo saplings at >1000 μmol mol−1 CO2. Acclimation of leaf net CO2 assimilation to the elevated CO2 concentration at growth occurred after 2 years of exposure. Maximum of net CO2 assimilation was 56% higher at ambient air CO2 concentration than at 700 μmol mol−1 CO2.  相似文献   

16.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   

17.
Mosier  A.R.  Morgan  J.A.  King  J.Y.  LeCain  D.  Milchunas  D.G. 《Plant and Soil》2002,240(2):201-211
In late March 1997, an open-top-chamber (OTC) CO2 enrichment study was begun in the Colorado shortgrass steppe. The main objectives of the study were to determine the effect of elevated CO2 (720 mol mol–1) on plant production, photosynthesis, and water use of this mixed C3/C4 plant community, soil nitrogen (N) and carbon (C) cycling and the impact of changes induced by CO2 on trace gas exchange. From this study, we report here our weekly measurements of CO2, CH4, NOx and N2O fluxes within control (unchambered), ambient CO2 and elevated CO2 OTCs. Soil water and temperature were measured at each flux measurement time from early April 1997, year round, through October 2000. Even though both C3 and C4 plant biomass increased under elevated CO2 and soil moisture content was typically higher than under ambient CO2 conditions, none of the trace gas fluxes were significantly altered by CO2 enrichment. Over the 43 month period of observation NOx and N2O flux averaged 4.3 and 1.7 in ambient and 4.1 and 1.7 g N m–2 hr –1 in elevated CO2 OTCs, respectively. NOx flux was negatively correlated to plant biomass production. Methane oxidation rates averaged –31 and –34 g C m–2 hr–1 and ecosystem respiration averaged 43 and 44 mg C m–2 hr–1 under ambient and elevated CO2, respectively, over the same time period.  相似文献   

18.
Li  Zhong  Yagi  K.  Sakai  H.  Kobayashi  K. 《Plant and Soil》2004,258(1):81-90
Rice (Oryza sativa) was grown in six sunlit, semi-closed growth chambers for two seasons at 350 L L–1 (ambient) and 650 L L–1 (elevated) CO2 and different levels of nitrogen (N) supplement. The objective of this research was to study the influence of CO2 enrichment and N nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon (DOC) and dissolved CH4. Elevated CO2 concentration ([CO2]) demonstrated a wide range of enhancement to both above- and below-ground plant biomass, in particular to stems and roots (for roots when N was not limiting) in the mid-season (80 days after transplanting) and stems/ears at the final harvest, depending on season and the level of N supplement. Elevated [CO2] significantly increased microbial biomass carbon in the surface 5 cm soil when N (90 kg ha–1) was in sufficient supply. Low N supplement (30 kg ha–1) limited the enhancement of root growth by elevated [CO2], leading consequently to diminished response of soil microbial biomass carbon to CO2 enrichment. The concentration of dissolved CH4 (as well as soil DOC, but to a lesser degree) was observed to be positively related to elevated [CO2], especially at high rate of N application (120 kg ha–1) or at 10 cm depth (versus 5 cm depth) in the later half of the growing season (at 80 kg N ha–1). Root senescence in the late season complicated the assessment of the effect of elevated [CO2] on root growth and soil organic carbon turnover and thus caution should be taken when interpreting respective high CO2 results.  相似文献   

19.
Stimulation of vegetative growth by an elevated CO2 concentration does not always lead to an increase in reproductive yield. This is because reproductive yield is determined by the fraction of biomass allocated to the reproductive part as well as biomass production. We grew Xanthium canadense at low N (LN) and high N levels (HN) under an ambient (360 mol mol-1) and elevated (700 mol mol-1) CO2 concentration ([CO2]) in open-top chambers. Reproductive yield was analysed as the product of: (1) the duration of the reproductive period, (2) the rate of dry mass acquisition in the reproductive period, and (3) the fraction of acquired biomass allocated to the reproductive part. Elevated [CO2] increased the total amount of biomass that was allocated to reproductive structures, but this increase was caused by increased capsule mass without a significant increase in seed production. The increase in total reproductive mass was due mainly to an increase in the rate of dry mass acquisition in the reproductive period with a delay in leaf senescence. This positive effect was partly offset by a reduction in biomass allocation to the reproductive part at elevated [CO2] and HN. The duration of the reproductive period was not affected by elevated [CO2] but increased by HN. Seed production was strongly constrained by the availability of N for seed growth. The seed [N] was very high in X. canadense and did not decrease significantly at elevated [CO2]. HN increased seed [N] without a significant increase in seed biomass production. Limited seed growth caused a reduction in biomass allocation to the reproductive part even though dry mass production was increased due to increased [CO2] and N availability.  相似文献   

20.
Summary Seedlings of five tropical trees, Cecropia obtusifolia, Myriocarpa longipes, Piper auritum, Senna multijuga and Trichospermum mexicanum, were grown both as individuals, and in competition with each other at ambient (350) and two levels of elevated CO2 (525 and 700 l l-1) for a period of 111 days. Growth, allocation, canopy architecture, mid-day leaf water potential and soil moisture content were assessed three times over this period for individually grown plants, and at the end of the experiment for competitively grown plants. In addition, leaf photosynthesis and conductance were assessed for the individually grown plants midway through the experiment, and light profile curves were determined for the competitive arrays at three stages of development. Elevated CO2 did not affect photosynthesis or overall growth of the individually-grown plants but did affect canopy architecture; mean canopy height increased with CO2 in Piper and Trichospermum and decreased in Senna. Stomatal conductance decreased slightly as CO2 increased from 350 to 525 l l-1 but this had no significant effect upon whole plant water use of leaf water potential. Soil moisture content for the individuals increased marginally as CO2 increased, but this did not occur in the competitive arrays. There was a marked effect of CO2 upon species composition of the competitive arrays; Senna decreased in importance as CO2 increased while Cecropia, Trichospermum and Piper increased in importance. Stepwise regression analysis using competitive performance as the independent variable, and the various morphological and physiological parameters measured on the individually grown plants as independent variables, suggested that canopy height was the single most important variable determining competitive ability. Also significant were photosynthetic rate (particularly at low light levels) and allocation to roots early in the experiment. Light profiles in the canopy revealed that less than 15% of incident light penetrated to the level of mean canopy height. Results suggest that competition for light was the major factor determining community composition, and that CO2 affected competitive outcome through its affect upon canopy architecture.This study was supported by a grant from the US Department of Energy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号