首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
Bovine serum transferrin (type Tf-A) was isolated by a series of four techniques; (a) precipitation with Rivanol; (b) chromatography of the soluble protein fraction on a column of Sephadex G-150; (c) chromatography of the transferrin containing protein zone on a column of DEAE-Sephadex; and (d) chromatography on a column of DEAE-Sephadex after transferrin was treated with neuraminidase.
It was found that an unidentified protein binds firmly to transferrin, and its removal is only possible after the release of the sialic acid residues with neuraminidase. It is possible that this protein is hemopexin. The occurrence of multiple transferrin components is, in part, dependent on the number of sialic acid residues; possible differences in molecular weight or size seem not to be a factor. The amino acid composition of bovine transferrin, and that of each of three subfractions, resembles that of human transferrin. The calculated mol. wt. of bovine transferrin was found to be 67,000 from sedimentation and viscosity data and 72,400 from sedimentation and diffusion measurements. Sedimentation and viscosity data in concentrated urea suggest that bovine transferrin is composed of two subunits, an observation which is in contrast to data from studies which suggest that human transferrin is composed of a single polypeptide chain.  相似文献   

2.
Polyacrylamide-gel electrophoresis in urea was used to prepare the four molecular species of transferrin:diferric transferrin, apotransferrin and the two monoferric transferrins with either the C-terminal or the N-terminal metal-binding site occupied. The interaction of these 125I-labelled proteins with rabbit reticulocytes was investigated. At 4 degrees C the average value for the association constant for the binding of transferrin to reticulocytes was found to increase with increasing iron content of the protein. The association constant for apotransferrin binding was 4.6 X 10(6)M-1, for monoferric (C-terminal iron) 2.5 X 10(7)M-1, for monoferric (N-terminal iron) 2.8 X 10(7)M-1 and for diferric transferrin, 1.1 X 10(8)M-1. These differences in the association constants did not affect the processing of the transferrin species by the cells at 37 degrees C. Accessibility of the proteins to extracellular proteinase indicated that the transferrin was internalized by the cells regardless of the iron content of the protein, since in each case 70% was inaccessible. Cycling of the cellular receptors may also occur in the absence of bound transferrin.  相似文献   

3.
4.
A Bomford  S P Young  R Williams 《Biochemistry》1985,24(14):3472-3478
We have investigated the effect of increasing concentrations of methylamine (5, 10, and 25 mM) on the removal of iron from the two iron-binding sites of transferrin during endocytosis by human erythroleukemia (K562) cells. The molecular forms of transferrin released from the cells were analyzed by polyacrylamide gel electrophoresis in 6 M urea. Endocytosis of diferric transferrin was efficient since greater than 10% of surface-bound protein escaped endocytosis and was released in the diferric form. Although transferrin exocytosed from control cells had been depleted of 80% of its iron and contained 65-70% apotransferrin, iron-bearing species were also released (15% C-terminal monoferric; 10% N-terminal; 10% diferric). The ratio of the two monoferric species (C/N) was 1.32 +/- 0.12 (mean +/- SD; n = 4), suggesting that iron in the N-terminal site was more accessible to cells. In the presence of methylamine there was a concentration-dependent increase in the proportion of diferric transferrin release (less than 80% at 25 mM) and a concomitant decrease in apotransferrin. Small amounts of the iron-depleted species, especially apotransferrin, appeared before diferric transferrin, suggesting that these were preferentially released from the cells. The discrepancy between the proportions of the monoferric transferrin species noted with control cells was enhanced at all concentrations of methylamine, most markedly at 10 mM when the C/N ratio was 2.4. The N-terminal site of transferrin loses its iron at a higher pH than the C-terminal site, and so by progressively perturbing the pH of the endocytic vesicle we have increased the difference between the two sites observed with control cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The mechanism and effectiveness of iron removal from transferrin by three series of new potential therapeutic iron sequestering agents have been analyzed with regard to the structures of the chelators. All compounds are hexadentate ligands composed of a systematically varied combination of methyl-3,2-hydroxypyridinone (Me-3,2-HOPO) and 2,3-dihydroxyterephthalamide (TAM) binding units linked to a polyamine scaffold through amide linkers; each series is based on a specific backbone: tris(2-aminoethyl)amine, spermidine, or 5-LIO(TAM), where 5-LIO is 2-(2-aminoethoxy)ethylamine. Rates of iron removal from transferrin were determined spectrophotometrically for the ten ligands, which all efficiently acquire ferric ion from diferric transferrin with a hyperbolic dependence on ligand concentration (saturation kinetics). The effect of the two iron-binding subunits Me-3,2-HOPO and TAM and of the scaffold structures on iron removal ability is discussed. At the low concentrations corresponding to therapeutic dose, TAM-containing ligands exhibit the fastest rates of iron removal, which correlates with their high affinity for ferric ion and suggests the insertion of such binding units into future therapeutic chelating agents. In addition, urea polyacrylamide gel electrophoresis was used to measure the individual microscopic rates of iron removal from the three iron-bound transferrin species (diferric transferrin, N-terminal monoferric transferrin, C-terminal monoferric transferrin) by the representative chelators 5-LIO(Me-3,2-HOPO)(2)(TAM) and 5-LIO(TAMmeg)(2)(TAM), where TAMmeg is 2,3-dihydroxy-1-(methoxyethylcarbamoyl)terephthalamide. Both ligands show preferential removal from the C-terminal site of the iron-binding protein. However, cooperative effects between the two binding sites differ with the chelator. Replacement of hydroxypyridinone moieties by terephthalamide groups renders the N-terminal site more accessible to the ligand and may represent an advantage for iron chelation therapy.  相似文献   

6.
 The effectiveness and mechanism of iron acquisition from transferrin or lactoferrin by Aeromonas hydrophila has been analyzed with regard to the pathogenesis of this microbe. The ability of A. hydrophila's siderophore, amonabactin, to remove iron from transferrin was evaluated with in vitro competition experiments. The kinetics of iron removal from the three molecular forms of ferric transferrin (diferric, N- and C-terminal monoferric) were investigated by separating each form by urea gel electrophoresis. The first direct determination of individual microscopic rates of iron removal from diferric transferrin is a result. A. hydrophila 495A2 was cultured in an iron-starved defined medium and the growth monitored. Addition of transferrin or lactoferrin promoted bacterial growth. Growth promotion was independent of the level of transferrin or lactoferrin iron saturation (between 30 and 100%), even when the protein was sequestered inside dialysis tubing. Siderophore production was also increased when transferrin or lactoferrin was enclosed in a dialysis tube. Cell yield and growth rate were identical in experiments where transferrin was present inside or outside the dialysis tube, indicating that binding of transferrin was not essential and that the siderophore plays a major role in iron uptake from transferrin. The rate of iron removal from diferric transferrin shows a hyperbolic dependence on amonabactin concentration. Surprisingly, amonabactin cannot remove iron from the more weakly binding N-terminal site of monoferric transferrin, while it is able to remove iron from the more strongly binding C-terminal site of monoferric transferrin. Iron from both sites is removed from diferric transferrin and it is the N-terminal site (which does not release iron in the monoferric protein) that releases iron more rapidly! It is apparent that there is a significant interaction of the two lobes of the protein with regard to the chelator access. Taken together, these results support an amonabactin-dependent mechanism for iron removal by A. hydrophila from transferrin and lactoferrin. The implications of these findings for an amonabactin-dependent mechanism for iron removal by A. hydrophila from transferrin and lactoferrin are discussed. Received: 8 August 1999 / Accepted: 22 October 1999  相似文献   

7.
The role of the two iron-binding sites of rat transferrin in the exchange of iron with cells has been assessed using urea polyacrylamide gel electrophoresis to separate and quantitate the four possible molecular species of transferrin generated during the incubation of 125I-labelled transferrin with rat reticulocytes and hepatocytes. Addition of diferric transferrin to reticulocytes led directly to the appearance of apotransferrin together with small and comparable amounts of the two monoferric transferrins. After 2 h 44.8% of the iron had been removed by the cells, and of the iron-depleted transferrin 71.8% was apotransferrin, the remainder being monoferric transferrin, 16.1% with N-terminal iron and 12.1% with C-terminal iron. A similar pattern emerged with hepatocytes, but the rate of iron removal was slower and the proportion of apotransferrin generated was lower. After 4 h 10.9% of the iron had been removed from the transferrin and the distribution of the iron-depleted protein was: apotransferrin 26.9% and monoferric (N-terminal) 39.2%, (C-terminal) 33.9%. The appearance of apotransferrin during each incubation and the generation of both monoferric transferrins suggest that both cell types are able to remove iron from differic transferrin in pairwise fashion and that they do not appreciably distinguish between the two iron-binding sites of the protein. Release of iron from hepatocytes to apotransferrin lead to the appearance of both monferric species and then to increasing amounts of diferric transferrin. The process of iron release did not seem to distinguish between the vacant iron-binding sites of transferrin.  相似文献   

8.
1. Trypsin digestion of human serum transferrin partially saturated with iron(III)-nitrilotriacetate at pH 5.5 or pH 8.5 produces a carbohydrate-containing iron-binding fragment of mol.wt. 43000. 2. When iron(III) citrate, FeCl3, iron (III) ascorabate and (NH4)2SO4,FeSO4 are used as iron donors to saturate the protein partially, at pH8.5, proteolytic digestion yields a fragment of mol.wt. 36000 that lacks carbohydrate. 3. The two fragments differ in their antigenic structures, amino acid compositions and peptide 'maps'. 4. The fragment with mol.wt. 36000 was assigned to the N-terminal region of the protein and the other to the C-terminal region. 5. The distribution of iron in human serum transferrin partially saturated with various iron donors was examined by electrophoresis in urea/polyacrylamide gels and the two possible monoferric forms were unequivocally identified. 6. The site designated A on human serum transferrin [Harris (1977) Biochemistry 16, 560--564] was assigned to the C-terminal region of the protein and the B site to the N-terminal region. 7. The distribution of iron on transferrin in human plasma was determined.  相似文献   

9.
Periodate inactivation of ovotransferrin and human serum transferrin   总被引:4,自引:0,他引:4  
Azari and Phillips (Azari, P., and Phillips, J. L. 1970 Arch. Biochem. Biophys. 138, 32-38) reported that periodate treatment of iron-free ovotransferrin causes a rapid loss of iron-binding activity and an oxidation of 3 to 5 tyrosines and 1 tryptophan. Rapid inactivation and loss of tyrosine in ovotransferrin has been confirmed, and the work extended to human serum transferrin and effects of denaturing concentrations of urea. Extensive (> 80%) inactivations of both ovotransferrin and human serum transferrin were observed when approximately 4 tyrosines were destroyed. Amino acid analysis and 360-MHz 1H NMR spectra confirmed that tyrosines are the only residues rapidly oxidized; the correlation of tyrosine loss with the loss of iron-binding activity suggests strongly that the tyrosines involved are those that function as ligands to metal ions bound to the protein. NMR spectra also showed that periodate oxidation causes local changes of structure in ovotransferrin (presumably at the metal-binding sites) but does not grossly alter the conformation. The addition of 5 to 8 M urea greatly retarded the inactivation and losses of tyrosine.  相似文献   

10.
The transport of radioactive iron across the seminiferous tubules was analyzed in vivo by light-microscope quantitative radioautography. At 5 min after a single intratesticular injection of 55Fe-transferrin, a strong labeling of the basal aspect of the seminiferous epithelium was observed. Between 30 min and 2 h, the labeling on the basal aspect of the seminiferous epithelium decreased. This decrease was accompanied by a substantial increase of the radioautographic reaction over the cellular elements in the adluminal compartment. These results were consistent with the demonstration of 59Fe associated with meiotic spermatocytes and differentiating spermatids isolated by velocity sedimentation from testes injected with 59Fe-transferrin. Furthermore, after a single intratesticular injection of 59Fe-labeled human transferrin, radiolabeled rat transferrin was immunoprecipitated from homogenates of isolated tubules with a specific antibody and appeared as a single radioactive band on fluorographs of urea/polyacrylamide gels. Similarly, 59Fe-labeled rat transferrin but not 125I-transferrin was immunoprecipitated from rete testis fluids of testes infused with either 59Fe- or 125I-labeled human transferrin. Finally, the synthesis of testicular transferrin in vivo was demonstrated in fluorographs of immunoprecipitated transferrin after an intratesticular injection of 35S-methionine in rats whose livers were excluded from the general circulation by ligation of both the hepatic artery and the portal vein. Thus, our results demonstrated a unidirectional system of iron transport from the basal compartment of the seminiferous epithelium to the germ cells in the adluminal compartment involving two distinct transferrins, i.e., a serum transferrin and a testicular transferrin synthesized by the seminiferous epithelium.  相似文献   

11.
Uncertainty persists concerning the best method of estimating the volume and solute concentrations of the pulmonary epithelial lining fluid (ELF) recovered during bronchoalveolar lavage (BAL). In the present study, measurements were made of the BAL-to-plasma concentration ratios of a variety of solutes in an anesthetized rat model. One minute after an intravenous injection of labeled Na+ and urea, 5 ml of isotonic mannitol, saline, or glucose were injected into the trachea and an initial aliquot of the BAL was immediately removed. Initial BAL-to-plasma concentration ratios of urea, Na+, Cl-, Ca2+, and total protein were similar (ranging from 0.013 to 0.017) after BAL with mannitol, but albumin and transferrin ratios were approximately 60% lower and K+ ratios were five times greater. Lavage with saline yielded BAL-to-plasma urea concentration ratios similar to those obtained with mannitol lavage. The BAL-to-plasma specific activity of urea was about twice that of Na+, indicating that urea diffused into the ELF more rapidly than Na+ during the 70 s that elapsed between the time the radioactive urea and Na+ were injected into the circulation and the time when lavage was complete. Subsequent lavage samples also indicated that urea rapidly diffuses into the fluid-filled lungs. These experiments suggest that isotonic mannitol may be a useful solution for lavage, because it allows use of Na+ and perhaps Cl- as additional indicators of ELF dilution by BAL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A rise of hemoglobin concentration accompanied by an increase of the total iron in the blood serum of white mice was found under oxygen pressure of 4 atm for an hour (preconvulsive state) and 6 atm (convulsive state). Changes in correlations of hemoglobin fractions in the blood serum were detected in both stages of oxygen poisoning by disc-electrophoresis in 7.5% polyacrylamide gel. A rise of transferrin concentration under these conditions (hyperoxia) was observed. The deflections occurred were less pronounced following administration of urea to the animals before hyperbaric oxygenation.  相似文献   

13.
The dependence of the metal-binding properties of transferrin on pH in the pH 6--9 range was investigated by urea/polyacrylamide-gel electrophoresis. Equations are presented for calculating the relative values of the four conditional site constants for the stepwise binding of iron to the two sites of transferrin and for calculating the equilibrium distribution of the protein among the four principal forms, apotransferrin, the C-terminal and N-terminal monoferric transferrins and diferric transferrin. The relative affinity of iron for the two sites and the co-operativity of iron-binding follow characteristic "pH titration' curves. A mathematical model that can account for the former behaviour is presented. In both cases the metal-binding sites are affected by the ionization of functional groups with apparent pKa values near physiological pH approx. 7.4. There is strong positive co-operatively in the release of protons from these groups. The results indicate that pH must be accurately controlled in studies of the differential properties of the two sites of the transferrin molecule.  相似文献   

14.
Iron release from human serum transferrin (hTF) has been studied extensively; however, the molecular details of the mechanism(s) remain incomplete. This is in part due to the complexity of this process, which is influenced by lobe–lobe interactions, the transferrin receptor (TFR), the salt effect, the presence of a chelator, and acidification within the endosome, resulting in iron release. The present work brings together many of the concepts and assertions derived from previous studies in a methodical, uniform, and visual manner. Examination of earlier work reveals some uncertainty due to sample and technical limitations. We have used a combination of steady-state fluorescence and urea gels to evaluate the effect of conformation, pH, time, and the soluble portion of the TFR (sTFR) on iron release from each lobe of hTF. The use of authentic recombinant monoferric and locked species removes any possibility of cross-contamination by acquisition of iron. Elimination of detergent by use of the sTFR provides a further technical advantage. We find that iron release from the N-lobe is very sensitive to the conformation of the C-lobe, but is insensitive to the presence of the sTFR or to changes in pH (between 5.6 and 6.4). Specifically, when the cleft of the C-lobe is locked, the urea gels indicate that only about half of the iron is completely removed from the cleft of the N-lobe. Iron release from the C-lobe is most affected by the presence of the sTFR and changes in pH, but is unaffected by the conformation of the N-lobe. A model for iron release from diferric hTF is provided to delineate our findings. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
1. Human lactoferrin and transferrin are capable of binding several transition metal ions [Fe(III), Cu(II), Mn(III), Co(III)] into specific binding sites in the presence of bicarbonate. 2. Increased conformational stability and increased resistance to protein unfolding is observed for these metal-ion complexes compared to the apoprotein form of these proteins. 3. Mn(III)-lactoferrin and transferrin complexes exhibit steeper denaturation transitions than the Co(III) complexes of these proteins suggesting greater cooperativity in the unfolding process. 4. The incorporation of Fe(III) into the specific metal binding sites offers the greatest resistance to thermal unfolding when compared to the other transition metal ions studied. 5. Non-coincidence of unfolding transitions is observed, with fluorescence transition midpoints being lower than those determined by absorbance measurements. 6. Fully denatured proteins in the presence of urea and alkyl ureas exhibit fluorescence wavelength maxima at 355-356 nm indicative of tryptophan exposure upon protein unfolding.  相似文献   

16.
1. A rare genetic variant of human serum transferrin (TfBSHAW) is reported. 2. The variant and normal transferrins have been purified. 3. The two proteins have been shown to be identical with respect to their molecular weights, heat stability, iron uptake and absorbance spectra. 4. The amino acid substitution is thought to be isoleucine replaced by asparagine at either position 378 or position 381. 5. The ferric iron bound to the C-site of TfBSHAW is unstable in the presence of protons or 6 M urea.  相似文献   

17.
O Zak  P Aisen 《Biochemistry》1988,27(3):1075-1080
A wide variety of thermodynamic, kinetic, and spectroscopic studies have demonstrated differences between the two metal-binding sites of transferrin. In the present investigation, we have further assessed these differences with respect to the binding of gadolinium, evaluated by UV difference spectrophotometry, electron paramagnetic resonance (EPR) titration, EPR difference spectroscopy in conjunction with urea gel electrophoresis, and equilibrium dialysis. Combinations of these studies establish that only one site of the protein binds Gd(III) sufficiently firmly to be characterized. In order to reveal which of the two sites accepts Gd(III), we made use of monoferric transferrins preferentially loaded with Fe(III) at either site in EPR spectroscopic studies. Because of the overlap of signals, difference spectroscopy was required to distinguish resonances arising from Fe(III) and Gd(III) specifically complexed to the protein. When iron is bound to the C-terminal site, leaving the N-terminal site free for binding of gadolinium, the difference spectrum shows no evidence of specific binding. However, when iron is bound to the N-terminal site, the difference spectrum shows a resonance line at g' = 4.1 indicative of specific binding, thus implicating the C-terminal site in the binding of Gd(III). The effective stability constant for the binding of Gd(III) to this site of transferrin at pH 7.4 and ambient pCO2 is 6.8 X 10(6) M-1. At physiological pCO2, the formation of nonbinding carbonato complexes of Gd(III) precludes a substantial role for transferrin in the transport of the lanthanide in vivo.  相似文献   

18.
Incubation of horse-heart oxymyoglobin or metmyoglobin with excess H2O2 causes formation of myoglobin(IV), followed by haem degradation. At the time when haem degradation is observed, hydroxyl radicals (.OH) can be detected in the reaction mixture by their ability to degrade the sugar deoxyribose. Detection of hydroxyl radicals can be decreased by transferrin or by OH scavengers (mannitol, arginine, phenylalanine) but not by urea. Neither transferrin nor any of these scavengers inhibit the haem degradation. It is concluded that intact oxymyoglobin or metmyoglobin molecules do not react with H2O2 to form OH detectable by deoxyribose, but that H2O2 eventually leads to release of iron ions from the proteins. These released iron ions can react to form OH outside the protein or close to its surface. Salicylate and the iron chelator desferrioxamine stabilize myoglobin and prevent haem degradation. The biological importance of OH generated using iron ions released from myoglobin by H2O2 is discussed in relation to myocardial reoxygenation injury.  相似文献   

19.
转铁蛋白具有多种生物学功能,不仅参与铁的转运,而且具有抗菌、免疫调节等功能。对黄喉拟水龟转铁蛋白(Mauremys mutica transferrin,MaTf)原核表达、重组蛋白纯化、抗菌活性检测及MaTf在蛋白水平的表达特征进行了分析研究。通过用RT-PCR技术扩增MaTf的编码序列,克隆至载体pET-32 a(+);转化BL21(DE3),构建了其原核表达载体;优化表达条件(30℃,4h,0.8 mmol/L IPTG),使MaTf融合蛋白在BL21中高效表达;采用His Bind柱亲和层析与浓缩的方法纯化目的蛋白,Western blot证实获得纯度较高的MaTf重组蛋白;抑菌试验表明,MaTf重组蛋白对金黄色葡萄球菌、大肠杆菌和黏质沙雷氏菌均有明显的抑菌作用;用MaTf重组蛋白制备多克隆抗血清,Western blot免疫印记法分析转铁蛋白在体内的表达特征,结果显示其在肝脏、脾脏、肾脏、心脏4个组织中的表达量为:肝脏>脾脏>肾脏>心脏,与MaTf在RNA水平上的表达特征具有相似性。研究为探索转铁蛋白在黄喉拟水龟非特异性免疫反应中的作用提供了重要信息。  相似文献   

20.
Although the transport of solutes from air spaces to plasma has been extensively studied, comparatively little information is available concerning solute equilibration between the plasma and the epithelial lining fluid (ELF) of air-filled lungs. In the present study, 11 lipophobic indicators varying in molecular mass between 22 and 80,000 Da were injected intravenously and/or intramuscularly into anesthetized rats in a manner designed to keep blood concentrations constant. The animals were killed by rapid lavage of their lungs at various intervals up to 120 min after the injections had been made. Indicator concentrations in the bronchoalveolar lavage (BAL) fluid and plasma were determined, and BAL-to-plasma concentration ratios were calculated for indicators that were injected (exogenous: [14C]urea, 22Na+, [3H]mannitol, 99mTc-diethylenetriaminepentaacetate (a chelate), 51Cr-(ethylene dinitrilo)tetraacetate (a chelate), 113mIn-transferrin, human albumin, and Evans blue-labeled rat albumin) and those that were already present from the plasma and ELF (unlabeled urea, rat albumin, and rat transferrin). Leakage of exogenous indicators in the blood into the BAL fluid was observed during the lavage procedure. Leakage of [14C]urea, 22Na+, and [3H]mannitol exceeded that of the heavier solute molecules. Diffusion of proteins and the labeled chelates into the ELF before lavage occurred at similar rates, suggesting vesicular transport. Use of rapidly diffusible solutes such as urea for determining dilution of ELF by BAL should be accompanied by intravascular injections of labeled solutes to correct for diffusion from the blood during lavage. Alternatively, labeled chelates or serum proteins can be used to estimate dilution of ELF by BAL. Interstitial sampling may be inevitable if the epithelium has been injured before lavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号