首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine Micropaleontology》2009,70(3-4):282-296
An assemblage of planktonic foraminifera is described from 125 samples taken from the Cercado, Gurabo, and Mao Formations in the Cibao Valley, northern Dominican Republic. The primary objectives of this study are to establish a biochronologic model for the late Neogene of the Dominican Republic and to examine sea surface conditions within the Cibao Basin during this interval. The Cercado Formation is loosely confined to Zones N17 and N18 (∼ 7.0–5.9 Ma). The Gurabo Formation spans Zones N18 and N19 (∼ 5.9–4.5 Ma). The Mao Formation is placed in Zone N19 (∼ 4.5–3.6 Ma). Changes in the relative abundances of indicator species are used to reconstruct sea surface conditions within the basin. Increasing relative abundances of Globigerinoides sacculifer and Globigerinoides ruber, in conjunction with a decreasing relative abundance of Globigerina bulloides, suggests the onset of increasing sea surface temperature and salinity in conjunction with diminishing primary productivity at ∼ 6.0 Ma. Abrupt increases in the relative abundances of G. sacculifer and G. ruber at ∼ 4.8 Ma suggest a major increase in sea surface temperature and salinity in the early Pliocene. The most likely mechanism for these changes is isolation of the Caribbean Ocean through progressive restriction of Pacific–Caribbean transfer via the Central American Seaway. Periods of high productivity associated with upwelling events are recorded in the upper Cercado Formation (∼ 6.1 Ma) and in the middle Mao Formation (∼ 4.2 Ma) by spikes in G. bulloides and Neogloboquadrina spp. respectively. The timing of major increases in sea surface salinity and temperature as well as decreasing productivity (∼ 4.8 Ma) and periods of upwelling (∼ 6.1and 4.2 Ma) in the Cibao Basin generally corroborate previously suggested Caribbean oceanographic changes related to the uplift of Panama. Changes in sea surface conditions depicted by paleobiogeographic distributions in the Cibao Basin suggest that shoaling along the Isthmus of Panama had implications in a shallow Caribbean basin as early as 6.0 Ma. Major paleobiologic changes between ∼ 4.8 and 4.2 Ma likely represent the period of final closure of the CAS and a nearly complete disconnection between Pacific and Caribbean water masses. This study illustrates the use of planktonic foraminifera in establishing some paleoceanographic conditions (salinity, temperature, productivity, and upwelling) within a shallow water basin, outlining the connection between regional and localized oceanographic changes.  相似文献   

2.
A high-resolution record of radiolarian faunal abundances from the eastern equatorial Pacific is compared to records of carbonate and noncarbonate burial to examine the evolution of eastern tropical Pacific climate processes during the Pliocene. These data provide a means to evaluate the sensitivity of the equatorial Pacific to the onset of Northern Hemisphere glaciation around 2.8−2.5 Ma, to the closure of the Isthmus of Panama around 4.4−3.2 Ma, and to orogeny-related weathering changes before 4.0 Ma. Radiolarian faunal assemblages and sea surface temperature (SST) estimates indicate a gradual cooling from early to late Pliocene, but no significant changes occur near the onset of northern hemisphere glaciation. Records of carbonate and noncarbonate mass accumulation show a long term decrease from the Miocene/Pliocene boundary to the upper Pliocene. Greater carbonate burial in the early Pliocene relative to the late Pliocene parallels a gradual cooling from early to late Pliocene, and may reflect changes related to Isthmus closure or widespread orogeny. No significant time domain changes are seen in the eastern equatorial Pacific that could be related to the onset of Northern Hemisphere glaciation.Evolutive spectral analyses of these equatorial Pacific climate parameters indicate that variance in SST and seasonality commonly concentrate at frequencies not linearly related to orbital variations. Furthermore, cross spectral comparisons with a high resolution benthic δ18O record indicate that the surface ocean and carbonate flux share little coherent variance with high latitude climate processes during the Pliocene. Given the high degree of chronostratigraphic control in these records, these results suggest that Milankovitch-band surface ocean processes as well as carbonate burial in the equatorial Pacific are decoupled from high latitude climate processes during the Pliocene.  相似文献   

3.
The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified.Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in δ18O values coded as “Oi” and “Mi” events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific.Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.We also reviewed changes in other microfossil assemblages in the low latitudes during the late Oligocene through early Miocene. The microfossil assemblages of major groups show sequential changes near the Oligocene/Miocene (O/M) boundary (23.8 Ma). Many extinction events and some first occurrences of calcareous nannofossils and many occurrences of radiolarians are found from about 24.8 to 23.3 Ma, and first occurrences of planktic foraminifers and diatoms followed from 23.2 through 22 Ma. Hence, the O/M boundary is identified as a significant level for microfossil evolutions.  相似文献   

4.
The hydrography of the South China Sea (SCS) is characterized by a south–north (S–N) thermocline gradient in the upper water column from the northern margin of the western Pacific warm Pool (WPWP) to the sea area largely controlled by the East Asian monsoon. Here we examine the records of planktonic foraminifers from Ocean Drilling Program (ODP) Sites 1143 and 1146 in the southern and northern parts of the SCS, respectively, that identify three stages of evolution of the S–N hydrographic gradient in the SCS since the middle Miocene: first, the S–N thermocline gradient possibly occurred in the SCS for the first time during the period 11.510.6 Ma, reflected by an opposite change in the relative abundance of deep-dwelling planktonic foraminiferal species in the south and north; next, the S–N thermocline gradient weakened or even disappeared during the period 10.64.0 Ma, indicated by similar changes in the relative abundance of deep-dwelling species in the south and north; last, the S–N thermocline gradient substantially increased from about 4.03.2 Ma, marked by a major increase in abundance of deep-dwelling species in the northern SCS and a decrease in the southern SCS. Based on the results of oceanic and coupled ocean–atmosphere model experiments and previous studies on planktonic foraminifers in the Pacific Ocean, it is inferred that the initial WPWP was probably formed during the period of 11.510.6 Ma in response to the closure of the Indonesian seaway; The WPWP then weakened or became extremely unstable, before developing its present expression about 4.0–3.2 Ma, induced by the emergence of the Isthmus of Panama. Our observations and model experiments support the argument that the stages in evolution of the WPWP are linked to tectonic changes in ocean gateways.  相似文献   

5.
The coccolithophore assemblages in two ODP Sites (1237 and 1238) are studied in order to reconstruct the paleoenvironmental conditions in the tropical and equatorial Pacific during the last 800 kyr. Both ODP Sites are located in the two most significant upwelling zones of the tropical and equatorial Pacific: Peru and Equatorial upwelling, respectively. The two sites are considered to have had similar evolutions. The coccolith relative abundance, the nannofossil accumulation rate (NAR) and the N ratio (namely, the proportion of < 3 μm placoliths in relation to Florisphaera profunda) allow us to identify three different intervals. Interval I (0.86-0.45 Ma) and interval III (0.22-0 Ma) are related to weak upwelling and weak Trade Winds, as suggested by coccolithophore assemblages with low N ratios. Interval II (0.45-0.22 Ma), characterized by dominant Gephyrocapsa caribbeanica and very abundant “small” Gephyrocapsa and Gephyrocapsa oceanica, is conversely related to intense upwelling and enhanced Trade Winds.  相似文献   

6.
A correlation between foraminiferal community dynamics and environmental conditions may provide a basis for establishing paleoclimatic proxies. We studied planktic foraminiferal shell fluxes and assemblages in samples collected in three time-series sediment trap deployments in the western equatorial Pacific under La Niña conditions from January to November 1999. Eleven species contributed about 90% of the total flux in all traps. Two sites (MT1, MT3) in the Western Pacific Warm Pool region (WPWP) were characterized by common occurrences of the species Globigerinoides ruber, Globigerinoides sacculifer, Globigerinoides tenellus, and Neogloboquadrina dutertrei. Site MT5 farther to the east in the equatorial upwelling region had common occurrences of Globigerina bulloides, Globigerinita glutinata, and Pulleniatina obliquiloculata. Very high abundances of G. bulloides and G. glutinata at MT5 indicate that equatorial upwelling (EU) occurred during the 1999 La Niña. The two western sites have similar assemblage compositions, but MT1 ( 135°E) has the highest fluxes (up to  3800 tests m− 2 day− 1), whereas MT3 ( 145° E) has fluxes below  2200 tests m− 2 day− 1. Relatively high fluxes (up to  3000 tests m− 2 day− 1) occur at site MT5 ( 176° E), where upwelling occurred.The differences in faunal composition in the WPWP and EU might be attributable to differences in the way in which nutrients are supplied to the phytoplankton: large amounts of suspended material are supplied to the WPWP by advection of waters passing through the coastal region of an archipelago, whereas upwelling of nutrient-rich waters enhances primary production in the EU. At the westernmost site in the WPWP, a peak in the G. bulloides flux coincided with southward flow of the New Guinea Coastal Current (NGCC) in late February, but the highest G. ruber flux coincided with northward flow of this current in late May. Thus, the differences in species dominance at this location may be caused by monsoon-driven variability in the flow direction of the NGGC.  相似文献   

7.
Evolution of the planktic foraminiferal lineageGloborotalia (Fohsella) occurred during the Miocene between 23.7 and 11.8 Ma and forms the basis for stratigraphic subdivision of the early middle Miocene (Zones N10 through N12). Important morphologic changes within theG. (Fohsella) lineage included a marked increase in test size, a transition from a rounded to an acute periphery, and the development of a keel in later forms. We found that the most rapid changes in morphology ofG. (Fohsella) occurred between 13 and 12.7 Ma and coincided with an abrupt increase in the δ18O ratios of shell calcite. Comparison of isotopic results ofG. (Fohsella) with other planktic foraminifers indicate that δ18O values of the lineage diverge from surface-dwelling species and approach deep-dwelling species after 13.0 Ma, indicating a change in depth habitat from the surface mixed layer to intermediate depth near the thermocline. Isotopic and faunal evidence suggests that this change in depth stratification was associated with an expansion of the thermocline in the western equatorial Pacific. After adapting to a deeper water habitat at 13.0 Ma, theG. (Fohsella) lineage became extinct abruptly at 11.8 Ma during a period when isotopic and faunal evidence suggest a shoaling of the thermocline. Following the extinction ofG. (Fohsella), the ecologic niche of the lineage was filled by theGloborotalia (Menardella) group, which began as a deep-water form and later evolved to an intermediate-water habitat. We suggest that the evolution ofG. (Fohsella) andG. (Menardella) were tightly linked to changes in the structure of the thermocline in the western equatorial Pacific.  相似文献   

8.
In Pliocene and Quaternary deep-sea sediments of DSDP Site 284 (temperate South Pacific), a significant positive correlation exists between test porosity and the percentage of forms with reticulate surface ultrastructure in samples of the planktonic foraminifer Neogloboquadrina pachyderma (Ehrenberg). Surface ultrastructural characteristics have previously been shown to be related to paleoceanographic oscillations. No relation exists between porosity and surface ultrastructure in either the Late Miocene or earliest Pliocene samples measured.  相似文献   

9.
This paper describes the first fossil porcupine remains from Iran. Four upper cheek teeth and two fragmentary lower incisors present sufficient characters for identification as Hystrix aryanensis, a species previously known from the late Miocene locality of Molayan (Afghanistan) estimated at ca. 7–8 Ma. The dental features of porcupines are discussed to show their systematic value and highlight evolutionary trends in late Miocene and Pliocene porcupines. This study also discusses the dispersal history of fossil porcupines in relation to paleobiogeographic provinces and environmental changes during late Miocene to late Pliocene time.  相似文献   

10.
Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long‐term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm‐adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late‐Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near‐term high temperature‐induced mass species extinction is unlikely.  相似文献   

11.
High-resolution records of diatoms, silicoflagellates, and geochemistry covering the past 15,000 years were studied in three cores from the Gulf of Alaska (GOA). Core EW0408-85JC in an oceanic setting on the Kayak Slope displays a paleoceanographic record similar to that at several locations on the California margin during deglaciation. Biologic productivity as reconstructed using geochemical and microfossil proxies increased abruptly during the Bølling–Alleröd (Bø–Al) warm interval (14.7–12.9 cal ka), declined during the Younger Dryas (YD) cold interval (12.9 to 11.7 cal kyr BP), and rose again during the earliest Holocene. At this site, the record after ~ 11 cal kyr BP is dominated by oceanic diatoms and silicoflagellates, with geochemical proxies displaying more subtle variation.Cores EW0408-66JC in the Yakobi Sea Valley near Cross Sound and EW0408-11JC in the Gulf of Esquibel contain an expanded, composite record along the southeast Alaskan margin. Core 66JC contains a detailed record of the Bø–Al and YD. Diatoms and silicoflagellates indicate that coastal upwelling and biosiliceous productivity were strong during the Bø–Al but declined during the YD. Sea ice-related diatoms increased in abundance during the YD, indicating cooler, but less productive waters.The glacial to biogenic marine sediment transition in core 11JC occurs at 1280 cmbsf (centimeters below sea floor), probably representing rising sea level and deglaciation early in the Bø–Al. Freshwater and sea-ice related diatoms are common in the lower part of the core (Bø–Al and YD), but upwelling-related diatoms and silicoflagellates quickly increased in relative abundance up-core, dominating the record of the past 11,000 years. Low oxygen conditions in the bottom water as reconstructed using geochemical proxies (U and Mo concentration) were most intense between ~ 6.5 and 2.8 cal kyr BP, the beginning of which is coincident with increases in abundance of upwelling-related diatoms.The records from these three cores jointly thus made it possible to reconstruct paleoclimatic and paleoceanographic conditions at high northern Pacific latitudes during the last 15 kyr.  相似文献   

12.
《Marine Micropaleontology》2007,65(3-4):121-140
We analyzed foraminiferal and nannofossil assemblages and stable isotopes in samples from ODP Hole 807A on the Ontong Java Plateau in order to evaluate productivity and carbonate dissolution cycles over the last 550 kyr (kilo year) in the western equatorial Pacific. Our results indicate that productivity was generally higher in glacials than during interglacials, and gradually increased since MIS 13. Carbonate dissolution was weak in deglacial intervals, but often reached a maximum during interglacial to glacial transitions. Carbonate cycles in the western equatorial Pacific were mainly influenced by changes of deep-water properties rather than by local primary productivity. Fluctuations of the estimated thermocline depth were not related to glacial to interglacial alternations, but changed distinctly at ∼ 280 kyr. Before that time the thermocline was relatively shallow and its depth fluctuated at a comparatively high amplitude and low frequency. After 280 kyr, the thermocline was deeper, and its fluctuations were at lower amplitude and higher frequency. These different patterns in productivity and thermocline variability suggest that thermocline dynamics probably were not a controlling factor of biological productivity in the western equatorial Pacific Ocean. In this region, upwelling, the influx of cool, nutrient-rich waters from the eastern equatorial Pacific or of fresh waters from rivers have probably never been important, and their influence on productivity has been negligible over the studied period. Variations in the inferred productivity in general are well correlated with fluctuations in the eolian flux as recorded in the northwestern Pacific, a proxy for the late Quaternary history of the central East Asian dust flux into the Pacific. Therefore, we suggest that the dust flux from the central East Asian continent may have been an important driver of productivity in the western Pacific.  相似文献   

13.
This study attempts to understand the significance of Uvigerina proboscidea in paleoceanographic reconstructions at the northern (tropical) Indian Ocean DSDP Site 214 from the Late Miocene through the Pleistocene. In this interval at this site, U. proboscidea is the most abundant species of the benthic assemblage and shows abrupt frequency changes (about 1–74%). Based on relative percentages of U. proboscidea calibrated with oxygen and carbon isotope record and the sediment accumulation rates, the modern distribution of the species in the Indian Ocean, and other evidence, the peaks of abundance of U. proboscidea are inferred to represent times of high-surface productivity. This productivity is related to intensified trade winds during strong southwest (SW) Indian monsoons, causing widespread upwelling along equatorial divergence in the Indian Ocean. The sudden increase of U. proboscidea abundance at approximately 8.5–7.5 Ma reflects significant upwelling at the equatorial divergence. This event corresponds to the permanent build-up of West Antarctic ice sheets, and a major increase in SW Indian monsoons related upwelling in the northwestern Indian Ocean. The Chron-6 carbon shift at approximately 6.2 Ma is marked by another peak of abundance, reflecting widespread ocean fertility. The highest abundances of U. proboscidea and highest sediment accumulation rates occur between 5.8 and 5.1 Ma, which coincides with the greatest development of Antarctic ice sheets and strong southwest monsoons. The higher percentages at 3.2–3.1 Ma, approximately 2.4 Ma, and 1.6 Ma all represent phases of high productivity at the equatorial divergence.  相似文献   

14.
A high-resolution record of radiolarian faunal changes from Site Y8 south of the Subtropical Front (STF), offshore eastern New Zealand, provides insight into the paleoceanographic history of the last 265 kyrs. Quantitative analysis of radiolarian paleotemperature indicators and radiolarian-based sea surface temperature (SST) estimates reveal distinct shifts during glacial–interglacial (G-I) climate cycles encompassing marine isotope stages (MIS) 8–1. Faunas at Site Y8 are abundant and diverse and consist of a mixture of species typical of the subantarctic, transitional and subtropical zones which is characteristic of subantarctic waters just south of the STF. During interglacials, diverse radiolarian faunas have increased numbers of warm-water taxa (~ 15%) while cool-water taxa decrease to ~ 11% of the assemblage. Warmest climate conditions occurred during MIS 5.5 and the early Holocene Climatic Optimum (HCO) at the onset of MIS 1 where SSTs reach maxima of 12.8 and 12.9 °C, respectively. This suggests that temperatures during the HCO were comparable to the Eemian, one of the warmest interglacial intervals of the Late Quaternary. Glacials are characterized by less diverse radiolarian faunas with cool-water taxa increasing to 49% of the assemblage. Coolest climate conditions occurred in MIS 4 and 2 where SSTs are reduced to 5.4 °C and 4.3 °C, respectively. Radiolarian faunal changes and SST estimates clearly identify major water masses and oceanic fronts in the offshore eastern New Zealand area. During warmest MIS 5.5 and early MIS 1 substantial influence of northern-sourced Subtropical Surface Water (STW) is evident at Site Y8. This implies southward incursions of STW around the eastern crest of Chatham Rise with the STF displaced towards higher latitudes and spinning off eddies as far south as Campbell Plateau. Additionally, increased flow of the Southland Current (SC) might have enhanced the local occurrence of warm-water radiolarians derived from the subtropical Tasman Sea. Coolest glacials are marked by a strong inflow of cool, southern-sourced waters at Site Y8 indicating a more vigorous flow along the Subantarctic Front (SAF).  相似文献   

15.
《Comptes Rendus Palevol》2008,7(8):557-569
New observations on the Late Miocene and Earliest Pliocene mustelids from the Middle Awash of Ethiopia are presented. The Middle Awash study area samples the last six million years of African vertebrate evolutionary history. Its Latest Miocene (Asa Koma Member of the Adu-Asa Formation, 5.54–5.77 Ma) and Earliest Pliocene (Kuseralee and Gawto Members of the Sagantole Formation, 5.2 and 4.85 Ma, respectively) deposits sample a number of large and small carnivore taxa among which mustelids are numerically abundant. Among the known Late Miocene and Early Pliocene mustelid genera, the Middle Awash Late Miocene documents the earliest Mellivora in eastern Africa and its likely first appearance in Africa, a new species of Plesiogulo, and a species of Vishnuonyx. The latter possibly represents the last appearance of this genus in Africa. Torolutra ougandensis is known from both the Late Miocene and Early Pliocene deposits of the Middle Awash. The genus Sivaonyx is represented by at least two species: S. ekecaman and S. aff. S. soriae. Most of the lutrine genera documented in the Middle Awash Late Miocene/Early Pliocene are also documented in contemporaneous sites of eastern Africa. The new observations presented here show that mustelids were more diverse in the Middle Awash Late Miocene and Early Pliocene than previously documented.  相似文献   

16.
The Indo-Pacific is an area of intense ecological interest, not least because of the region’s rich biodiversity. Important insights into the origins, evolutionary history, and maintenance of Indo-Pacific reef faunas depend upon the analysis of faunal occurrences derived from detailed stratigraphic sections. We investigated Neogene origination and extinction patterns derived from a combination of new coral occurrences and previously published records from the central Indo-West Pacific Ocean (cIWP, Indonesia, Papua New Guinea and Fiji). Two faunal turnover events were observed. In the first, an increase in generic richness of Scleractinia from the cIWP during the middle Miocene (17–14 Ma) coincided with both large-scale sea level fluctuations and the great Mid-Miocene collision event. We raise the hypothesis that Mid-Miocene origination was facilitated by habitat and population fragmentation associated with tectonism and sea level fall. The second, subsequent, turnover event was characterized by an overall lowering of generic diversity throughout the late Miocene and Pliocene (7–3 Ma), and was followed by a pronounced pulse of extinction at the Pliocene–Pleistocene boundary (~2.6 Ma). With the exception of the onset of Pleistocene sea-level cycles and the onset of northern hemisphere glaciation around 2.5 Ma, which might explain increased extinction during this time interval, there are no tectonic, eustatic, climatic or oceanographic events that neatly coincide with this second episode of Neogene coral taxonomic turnover. Our results reveal a total of 62 genera, including synonyms, from the Miocene to the Pleistocene. Neither episode of turnover among coral genera is exactly coincident with turnover in the Atlantic thus regional environmental change is found to drive Neogene reef dynamics.  相似文献   

17.
《Marine Micropaleontology》2007,62(3):194-210
The study of radiolarian assemblages from Core MD 962086 provides new information on the variability in the upwelling intensity and origin of upwelled water masses over the past 350 ky in one of the major filamentous regions of the Benguela Upwelling System (BUS), located off Lüderitz, Namibia. The use of key radiolarian species to trace the source of upwelled waters, and the use of a radiolarian-based upwelling index (URI) to reconstruct the upwelling intensity represent the first use of radiolarians for paleoceanographic reconstructions in the BUS. These radiolarian-based proxies indicate strongest upwelling during Marine Isotope Stages (MIS) 3, 5, and 8, which compares well with other studies. While during MIS 3 and 8, the radiolarian-based proxies indicate the influx of waters of Southern Ocean origin, they also point to the increased influence of tropical waters during the lower portion of MIS 5. During MIS 2, 4 and 6 the radiolarian assemblages indicate generally lower upwelling intensities, although this signal is complicated by the increased occurrence of organic carbon in the sediments during these intervals. During MIS 2 there appears to be less of an input of Southern Ocean waters to the BUS, although during the also glacial MIS 4 and 6, there is evidence for an increased influence of cold Antarctic waters. The comparison of the results from Core MD 962086 with other studies in the BUS area indicates a non-uniform pattern of upwelling intensity and advection of cold, southern waters into this system during MIS 2. Weaker upwelling signaled by the radiolarian-based proxy in MIS 4 is in contrast to other studies that indicate higher productivity during this time period. In general, the data show that there is a strong spatiotemporal complexity in upwelling intensity in the BUS and that the advection of water into it is not strongly tied to glacial–interglacial variations in climate.  相似文献   

18.
Planktonic foraminifera from a continuous Oligocene succession with clear magnetochronology and sediment cycles at Ocean Drilling Program Site 1218 (equatorial Pacific Ocean) were studied in the interval from 27 to 30 Ma. Paragloborotalia taxa are common and we examined their size, relative abundance, and stable isotopes. Multispecies stable isotope data indicate the depth habitats of Oligocene planktonic foraminifera and suggest that “Globoquadrinavenezuelana and Dentoglobigerina globularis were probably mixed-layer dwellers, with paragloborotaliids recording heavier δ18O signatures consistent with a thermocline habitat. Cyclic variations in the abundance of Paragloborotalia match eccentricity (100 kyr) variations in percent carbonate and δ13C, suggesting orbitally forced upwelling in the equatorial Pacific Ocean and that Paragloborotalia were responding directly to changes in surface water productivity. The high-resolution biostratigraphy calibrated to the magnetochronology constrains the extinction of Paragloborotalia opima which marks the top of Planktonic Foraminifera Biozone O5 (P21b) at 27.456 Ma. The highest occurrence of P. opima is associated with a 50% size decrease in Paragloborotalia pseudocontinuosa taxa within Chron 9n. In addition, we find the extinction of Chiloguembelina cubensis is consistent with other deep-sea sections within Chron 10n at 28.426 Ma marking the O4/O5 (P21a/P21b) boundary.  相似文献   

19.
The best mammalian fossil record during the Neogene of Western Europe is that of the rodents, the most successful and diversified mammal order. The study of origination and extinction during the Neogene (24-3 Ma BP) in one of the best-documented areas, Spain and southern France, gives an insight into the dynamics of these communities and indicates the possible nature of the driving forces. Three main periods of time show a high rate of origination: the late Burdigalian (17.5 Ma BP), the early Vallesian (11.5-11 Ma BP) and the early Pliocene (4.2-3.8 Ma BP). Two of these high origination-rate periods are immediately followed by important extinction events during which all cohorts are deeply affected (11.5-11 Ma BP and 4.2-3.8 Ma BP). The most important extinction event seems to occur during the early Vallesian (11.5-11 Ma BP), which probably includes the middle/late Miocene boundary. At the Miocene/Pliocene boundary, and during the early Pliocene, the faunal turnover seems to become faster, inducing a strong decrease of the mean species duration. Whereas the main immigration event, which occurs at 17.5 Ma BP, can be related to other faunal migrations in terms of the closure of the Tethys, as it occurs also in eastern Africa and in southwest Asia, the middle/late Miocene boundary event may have been related to a period of ice growth in the Southern Hemisphere. The extinction event that affects the planktonic foraminifera at 12 Ma BP cannot be chronologically correlated to this southwestern European land-mammal extinction event, because the calibration of the marine fossil record during that time-span has to be precise. Some limited terrestrial faunal exchanges that occur during the Messinian between southwestern Europe and northwestern Africa do not deeply affect the general faunal dynamics. Both allochthonous cohorts of immigrants become rapidly extinct. Several endemic rodent faunas, indicating insular conditions, have been reported from the southern edge of the western European continent from the middle Miocene up to the Pliocene. All show low taxonomic diversity, strong endemism and short survival. Some of them, like those of the Gargano Islands during the late Miocene, underwent peculiar morphological changes and also speciation. The large number of rodent genera coevolving in the Gargano Islands is indicative of the large surface areas of these islands. The general geographic pattern of southwestern Europe during the Neogene may therefore correspond to a large continental province including Spain and southern France with some kind of fast-modifying archipelago on its southern rim.  相似文献   

20.
Two 305 m cored sections from the northwest Florida continental shelf contain a nearly complete record of late Neogene hemipelagic sedimentation. One of the sites, south and east of De Soto Canyon, is isolated from terrigenous sediment except for sediment transported in suspension. This site contains a continuous record from the late Miocene to the Recent. The second site, on the western rim of De Soto Canyon, is more expanded and continuous from the late Pliocene to the Recent. A hiatus separates the late Pliocene from the middle Miocene. Six prominent nannofossil biohorizons were recognized within the Pleistocene, seven within the Pliocene, and three within the Miocene; in addition one biohorizon marks the base of the Pleistocene and another the base of the Pliocene.Nearly all carbonate in the sediment is pelagic. Terrigenous detrital sedimentation was controlled by glacioeustatic sea level fluctuations during the Pleistocene, and sea level changes are probably responsible for fluctuations in the ratio of pelagic carbonate to clayey detritus in pre-Pleistocene sediments also. Carbonate content, coarse fraction percent, and relative abundances of environmentally sensitive nannoplankton species suggest important paleoceanographic changes in the northeastern Gulf of Mexico and adjacent areas. Fluctuations in the relative abundance of the solution-resistant coccoliths of the genusCyclococcolithus indicate that waters at a depth of 600–1000 m were more corrosive during the late Miocene than they are today. The decrease in carbonate dissolution during the late Miocene probably was a response to gradual constriction of the Central American passage and the consequent restriction of flow of corrosive water from the Pacific. Short term fluctuations in dissolution during the Pliocene and Pleistocene are related to climatic cycles.Productivity variations in the surface waters, recorded mainly by the relative abundance of small and large morphotypes of closely related coccolith species, indicate that productivity increased during the Pliocene, but the most dramatic change — a major oceanwide increase in productivity — occurred during the Pleistocene, during and just prior to the Jaramillo magnetic event about 0.9 m.y. ago. Surprisingly the late Miocene Messinian event did not leave a significant imprint in the northeastern Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号