首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the structure and chromatin organization of telomeres in Nicotiana tabacum. In tobacco the blocks of simple telomeric repeats (TTTAGGG)n are many times larger than in other plants, e.g., Arabidopsis thatiana or tomato. They are resolved as multiple fragments 60–160 kb in size (in most cases 90–130 kb) on pulsed-field gel electrophoresis (PFGE) of restriction endonuclease-digested DNA. The major subtelomeric repeat of the HRS60 family forms large homogeneous blocks of a basic 180 by motif having comparable lengths. Micrococcal nuclease (MNase) cleaves tobacco telomeric chromatin into subunits with a short repeat length of 157±5 bp; the subtelomeric heterochromatin characterized by tandemly repeated sequences of the HRS60 family is cut by MNase with a 180 by periodicity. The monomeric and dimeric particles of telomeric and subtelomeric chromatin differ in sensitivity to MNase treatment: the telomeric particles are readily digested, producing ladders with a periodicity of 7 bp, while the subtelomeric particles appear to be rather resistant to intranucleosomal cleavage. The results presented show apparent similarities in the organization of telomeric chromatin in higher plants and mammals.  相似文献   

2.
Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175–185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion.  相似文献   

3.
ABamHI family of highly repeated DNA sequences of theNicotiana tabacum nuclear genome, denoted as a HRS60-family, was recently isolated. It comprises about 2% of the tobacco nuclear genome. Monomeric units are 182–184 bp long. Members of the HRS60-family isolated till now are closely related. DNA-DNA hybridization experiments with DNA of the two tobacco progenitors,N. tomentosiformis andN. sylvestris, revealed that the HRS60-family was present in many copies inN. sylvestris, the amount being about 1.7 times that inN. tabacum. InN. tomentosiformis as well as in some other species of the genusNicotiana, the HRS60-family is present in a small amount. Sequences related to the HRS60-family were revealed using DNA-DNA hybridization at low stringency. With respect to quantity, the HRS60-family could be considered as a species-specific DNA repeat which may be a useful genetic marker in genetic manipulations withN. tabacum.  相似文献   

4.
The structural organization and evolution of two tandemly repeated families, Spelt1 and Spelt52, located in the subtelomeric regions of Aegilops speltoides chromosomes were studied. The Spelt1 family of sequences with a monomer length of 178 bp was characterized by cloning and sequence analysis of polymerase chain reaction (PCR) products. Members of the Spelt1 family revealed sequence similarities exceeding 95\%. This conservation has remained despite divergence of species in Aegilops section Sitopsis and after independent multiple amplification events in the genome of Ae. speltoides. Sequences representing the Spelt52 family were cloned, sequenced and compared with other sequences in databases. The Spelt52 repeat family contains monomers of two types, Spelt52.1 and Spelt52.2. The two monomers share a homologous stretch of 280 bp and have two regions without sequence similarity of 96 bp and 110 bp, respectively. PCR analysis was conducted to 15 lines in Ae. speltoidesTausch., Ae. longissimaSchw.&Mushc.,Ae. sharonensisEig.,Ae. bicornis(Forssk)Jaub.&Sp., andAe. searsii Feld.&Kis. using primers to the homologous and non- homologous regions of Spelt52 family. Intraspecies and interspecies differences in the occurrence and abundance of combinations of Spelt52.1 and Spelt52.2 monomers were detected. The use of primers to telomeric and subtelomeric repeats followed by Southern hybridization, cloning, and sequence analysis demonstrated that Spelt1 and Spelt52 are localized close to each other and to telomeric repeats. The efficiency of a PCR approach for the analysis of telomeric/subtelomeric junction regions of chromosomes is discussed.  相似文献   

5.
Cleavage of Vicia faba nuclear DNA with the restriction endonuclease BamHI yielded discrete size classes of 250, 850, 900, 990, 1 150, 1 500 and 1 750 bp of highly repetitive DNA. Each of these sequence families comprised about 3% of the total genomic DNA. Some sequence members from each sequence family were cloned in pBR322 and their primary structures determined. Computer analyses of nucleotide sequences suggested the existence of about 60 bp sequence periodicity within the repeating unit of the 990 bp sequence family, though the extent of homology among the surmised shorter subrepeat units was very low. With other BamHI sequence families, however, the data did not show any clear internal sequence periodicity. The repeat units of the 850 bp and 1 750 bp sequence families contained nucleotide sequences homologous to the 250 bp family sequence. No sequence relationship between or among other sequence families was observed. There was 13–25% sequence variation among 6 cloned members of the 250 bp family and probably also among those of other BamHI repeat families. DNA sequences homologous to these V. faba BamHI repeat families were detected in Pisum sativum DNA by Southern blot hybridization. Furthermore, very weak cross-hybridization was observed with plant DNAs from Phaseolus vulgaris, Triticum aestivum, Cucumis sativus and Trillium kamtschaticum.  相似文献   

6.
We investigated the influence of telomere proximity and composition on the expression of an EGFP reporter gene in human cells. In transient transfection assays, telomeric DNA does not repress EGFP but rather slightly increases its expression. In contrast, in stable cell lines, the same reporter construct is repressed when inserted at a subtelomeric location. The telomeric repression is transiently alleviated by increasing the dosage of the TTAGGG repeat factor 1 (TRF1). Upon a prolongated treatment with trichostatin A, the derepression of the subtelomeric reporter gene correlates with the delocalization of HP1α and HP1β. In contrast, treating the cells with 5 azacytidin, a demethylating agent, or with sirtinol, an inhibitor of the Sir2 family of deacetylase, has no apparent effect on telomeric repression. Overall, position effects at human chromosome ends are dependent on a specific higher-order organization of the telomeric chromatin. The possible involvement of HP1 isoforms is discussed.  相似文献   

7.
The subtelomeric regions of macronuclear gene-sized DNA molecules from Stylonychia lemnae were analyzed. The results obtained indicate that these regions show a highly ordered and common sequence organization: Immediately adjacent to the telomeric sequence a short inverted repeat sequence is found, followed by another 7–9 bp inverted repeat sequence at approximately position 40. A 10 bp consensus sequence found in the subtelomeric regions of all gene-sized DNA molecules is found at approximately position 60 and in addition at about the same position palindromic sequences showing no homology to each other are localized. The biological significance of this sequence organization is discussed. © 1993Wiley-Liss, Inc.  相似文献   

8.
Using human telomeric repeats and centromeric alpha repeats, we have identified adjacent single copy cosmid clones from human chromosome 22 cosmid libraries. These single copy cosmids were mapped to chromosome 22 by fluorescence in situ hybridisation (FISH). Based on these cosmids, we established contigs that included part of the telomeric and subtelomeric regions, and part of the centromeric and pericentromeric regions of the long arm of human chromosome 22. Each of the two cosmid contigs consisted of five consecutive steps and spanned approximately 100–150 kb at both extreme ends of 22q. Moreover, highly informative polymorphic markers were identified in the telomeric region. Our results suggest that the telomere specific repeat (TTAGGG) n encompasses a region that is larger than 40 kb. The cosmid contigs and restriction fragment length polymorphism markers described here are useful tools for physical and genetic mapping of chromosome 22, and constitute the basis of further studies of the structure of the subtelomeric and pericentromeric regions of 22q. We also demonstrate the use of these clones in clinical diagnosis of different chromosome 22 aberrations by FISH.  相似文献   

9.
Species-specific repeated DNAs are important for identifying genomic components of hybrid organisms in plant breeding and in taxonomic studies, and we have previously described the HRS60 and GRS families of highly repetitive DNA sequences in tobacco. Here we describe a new family of highly repetitive DNA sequences termed NTRS (SspI family) that we have isolated from Nicotiana tomentosiformis (Goodspeed) and characterized and that is specific for the genomes of several species of the subgenus Tabacum. In situ hybridization showed that NTRS sequences are present in three pairs of chromosomes of N. tomentosiformis, six pairs of chromosomes of N. kawakamii, and only one pair of chromosomes of N. tabacum at an intercalary site. The NTRS family is not present in the N. otophora genome. The majority of NTRS sequences appeared to be organized in tandem arrays in which local DNA structures sensitive to single strand-specific chemical probes, potassium permanganate, and osmium tetroxide complexed with pyridine revealed a periodicity of 220 bp, equal to the length of the repeat unit. The inner cytosine in CCGG and CC(A/T)GG sequences of the NTRS family is frequently methylated. Cloned and sequenced NTRS monomeric units are 212–219 bp in length and show 83.5%–95% mutual homology. They exhibit properties characteristic for molecules that possess stable intrinsic curvature, but there are differences among individual monomers in the degree of curvature. NTRS sequences like HRS60 and GRS sequences, were found to specify nucleosome positions. Received: 12 November 1996 / in revised form: 12 May 1997 / Accepted: 12 May 1997  相似文献   

10.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

11.
Robertson HM 《Genetics》2009,181(1):323-325
Simple telomeres were identified in the genome assembly of the basal placozoan animal Trichoplax adhaerens. They have 1–2 kb of TTAGGG telomeric repeats, which are preceded by a subtelomeric region of 1.5–13 kb. Unlike subtelomeric regions in most animals examined, these subtelomeric regions are unique to each telomere.  相似文献   

12.
Repetitive DNA sequences in the terminal heterochromatin of rye (Secale cereale) chromosomes have consequences for the structural and functional organization of chromosomes. The large-scale genomic organization of these regions was studied using the telomeric repeat from Arabidopsis and clones of three nonhomologous, tandemly repeated, subtelomeric DNA families with complex but contrasting higher order structural organizations. Polymerase chain reaction analysis with a single primer showed a fraction of the repeat units of one family organized in a "head-to-head" orientation. Such structures suggest evolution of chromosomes by chromatid-type breakage-fusion-bridge cycles. In situ hybridization and pulse field gel electrophoresis showed the order of the repeats and the heterogeneity in the lengths of individual arrays. After Xbal digestion and pulse field gel electrophoresis, the telomeric and two subtelomeric clones showed strong hybridization signals from 40 to 100 kb, with a maximum at 50 to 60 kb. We suggest that these fragments define a basic higher order structure and DNA loop domains of regions of rye chromosomes consisting of arrays of tandemly organized sequences.  相似文献   

13.
Arnold  M. L.  Shaw  D. D. 《Chromosoma》1985,93(2):183-190
C-band variation between the Caledia taxa is extensive with numerous large interstitial and telomeric blocks of heterochromatin being present in the South-east Australian and Moreton taxa while the Torresian types possess small centromeric or telomeric C-bands. In situ hybridization using 3H-cRNA from a 168 bp (base pairs) highly repeated sequence, originally isolated from the South-east Australian taxon, defined further variation between the C. captiva taxa. This sequence family is present in each of the interstitial and telomeric constitutive heterochromatic blocks in the South-east Australian and Moreton taxa. However, it is represented in only a fraction of the heterochromatic regions, defined by C-banding, within the three Torresian types. A second, unrelated 144 bp sequence family, originally isolated from the Daintree taxon, is restricted to the procentric blocks of heterochromatin of chromosomes 2–7, 9 and 10 in the Daintree taxon. This sequence is A-T rich and possesses a region of dyad symmetry. Quantitative measurements for the two sequence families revealed a wide range of copy numbers between the C. captiva taxa. The 168 bp family has approximately 150,000, 35,000 and 4,000 copies, respectively, in the South-east Australian/ Moreton, Torresian and Daintree genomes. There are 2,000,000 and 100,000 copies of the 144 bp sequence in the Daintree and Papuan Torresian taxa, respectively. The distributional, quantitative and sequence characteristics of these repeat families imply that past amplification or introgression has played a major role in the evolution of these sequences. There is an overall negative correlation between the quantity of the 168 bp sequence and the levels of reproductive isolation and genie divergence between the various taxa. It is possible that some of the reduction in the viability of the hybrid individuals is due to the quantitative changes in these sequences. Moreover, the quantitative and qualitative characteristics of highly repeated DNA families may play a role in the modulation of such essential cellular functions as cell cycle duration, nuclear organization and gene expression.  相似文献   

14.
15.
Unusual chromatin in human telomeres.   总被引:25,自引:5,他引:20       下载免费PDF全文
We report that human telomeres have an unusual chromatin structure characterized by diffuse micrococcal nuclease patterns. The altered chromatin manifested itself only in human telomeres that are relatively short (2 to 7 kb). In contrast, human and mouse telomeres with telomeric repeat arrays of 14 to 150 kb displayed a more canonical chromatin structure with extensive arrays of tightly packed nucleosomes. All telomeric nucleosomes showed a shorter repeat size than bulk nucleosomes, and telomeric mononucleosomal particles were found to be hypersensitive to micrococcal nuclease. However, telomeric nucleosomes were similar to bulk nucleosomes in the rate at which they sedimented through sucrose gradients. We speculate that mammalian telomeres have a bipartite structure with unusual chromatin near the telomere terminus and a more canonical nucleosomal organization in the proximal part of the telomere.  相似文献   

16.
The pericentromeric region of the human X chromosome is characterized by a tandemly repeated family of 2.0 kilobasepair (kb) DNA fragments, initially revealed by cleavage of human DNA with the restriction enzyme BamHI. We report here the complete nucleotide sequence of a cloned member of the repeat family and establish that this X-linked DNA family consists entirely of alpha satellite DNA. Our data indicate that the 2.0 kb repeat consists of twelve alpha satellite monomers arranged in imperfect, direct repeats. Each of the alpha X monomers is approximately 171 basepairs (bp) in length and is 60-75% identical in sequence to previously described primate alpha satellite DNAs. The twelve alpha X monomers are 65-85% identical in sequence to each other and are organized as two adjacent, related blocks of five monomers, plus an additional two monomers also related to monomers within the pentamer blocks. Partial nucleotide sequence of a second, independent copy of the 2.0 kb BamHI fragment established that the 2.0 kb repeat is, in fact, the unit of amplification on the X. Comparison of the sequences of the twelve alpha X monomers allowed derivation of a 171 bp consensus sequence for alpha satellite DNA on the human X chromosome. These sequence data, combined with the results of filter hybridization experiments of total human DNA and X chromosome DNA, using subregions within the 2.0 kb repeat as probes, provide strong support for the hypothesis that individual human chromosomes are characterized by different alpha satellite families, defined both by restriction enzyme periodicity and by chromosome-specific primary sequence.  相似文献   

17.
18.
The ends of eukaryotic chromosomes have special properties and roles in chromosome behavior. Selection for telomere function in yeast, using a Chinese hamster hybrid cell line as the source DNA, generated a stable yeast artificial chromosome clone containing 23 kb of DNA adjacent to (TTAGGG)n, the vertebrate telomeric repeat. The common repetitive element d(GT)n appeared to be responsible for most of the other stable clones. Circular derivatives of the TTAGGG-positive clone that could be propagated in E. coli were constructed. These derivatives identify a single pair of hamster telomeres by fluorescence in situ hybridization. The telomeric repeat tract consists of (TTAGGG)n repeats with minor variations, some of which can be cleaved with the restriction enzyme MnlI. Blot hybridization with genomic hamster DNA under stringent conditions confirms that the TTAGGG tracts are cleaved into small fragments due to the presence of this restriction enzyme site, in contrast to mouse telomeres. Additional blocks of (TTAGGG)n repeats are found 4–5 kb internally on the clone. The terminal region of the clone is dominated by a novel A-T rich 78 bp tandemly repeating sequence; the repeat monomer can be subdivided into halves distinguished by more or less adherence to the consensus sequence. The sequence in genomic DNA has the same tandem organization in probably a single primary locus of >20–30 kb and is thus termed a minisatellite.  相似文献   

19.
We have studied the chromatin structure ofPenicillium chrysogenum. This fungus presents the typical nucleosomal repeat and the core DNA size characteristic of all the eukaryotes. The repeat length (about 180 base pairs) is in the range of those obtained for most fungi (160–180 base pairs) and shorter than in higher eukaryotes. Knowledge aboutP. chrysogenum chromatin structure opens the way to the study of the mechanisms of genetic regulation in this filamentous fungus.  相似文献   

20.
The allele-specific epigenetic markings of endogenously imprinted genes in placental mammals occur during gametogenesis. The identification of the molecular nature of gametic imprints is the first step towards understanding the mechanistic basis of epigenesis in embryonic and adult somatic tissues. The specific question addressed in this work is whether the closely positioned but oppositely imprinted insulin-like growth factor 2 (IGF 2) and H19 genes, which have similar temporal regulation during development, differ in chromatin structure in mammalian spermatozoa. During terminal differentiation of mammalian spermatozoa, about 3–15% of the haploid genome retains a quasisomatic-type chromatin structure, whereas the remaining genomes interact with protamines that are further cross-linked by -S-S- bridges. Micrococcal nuclease (MNase) and DNase I digestions of human (HSN) and porcine sperm nuclei (PSN) showed that the IGF 2 gene in both types of nuclei retained somatic-type nucleosomes that were close-packed with a periodicity of 150 bp. However, the H19 gene in both species was predominantly organised by unique structural repeats, which were 650–674 bp in PSN and 438–522 bp in HSN, condensing at least 20 kb of chromatin. These results, together with previous studies, suggest that epigenetic chromatin modification leading to preferential condensation of the paternal H19 allele in embryonic tissues is already present in the germ cells. Mol. Reprod. Dev. 50:474–484, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号