首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrolysis of beta-lactam antibiotics by beta-lactamase enzymes is the most common mechanism of bacterial resistance to these agents. Several small-molecule, mechanism-based inhibitors of beta-lactamases such as clavulanic acid are clinically available although resistance to these inhibitors has been increasing in bacterial populations. In addition, these inhibitors act only on class A beta-lactamases. Here we utilized phage display to identify peptides that bind to the class A beta-lactamase, TEM-1. The binding affinity of one of these peptides was further optimized by the synthesis of peptide arrays using SPOT synthesis technology. After two rounds of optimization, a linear 6-mer peptide with the sequence RRGHYY was obtained. A soluble version of this peptide was synthesized and found to inhibit TEM-1 beta-lactamase with a K(i) of 136 micro M. Surprisingly, the peptide inhibits the class A Bacillus anthracis Bla1 beta-lactamase with a K(i) of 42 micro M and the class C beta-lactamase, P99, with a K(i) of 140 micro M, despite the fact that it was not optimized to bind these enzymes. This peptide may be a useful starting point for the design of non-beta-lactam, broad-spectrum peptidomimetic inhibitors of beta-lactamases.  相似文献   

2.
Beta-lactams with 6alpha (penicillins) or 7alpha (cephalosporins) substituents are often beta-lactamase inhibitors. This paper assesses the effect of such substituents on acyclic beta-lactamase substrates. Thus, a series of m-carboxyphenyl phenaceturates, substituted at the glycyl alpha-carbon by -OMe, -CH(2)OH, -CO(2)(-), and -CH(2)NH(3)(+), have been prepared, and tested for their reactivity against serine beta-lactamases. The latter two are novel substituents in beta-lactamase substrates. The methoxy and hydroxymethyl compounds were found to be poor to moderately good substrates, depending on the enzyme. The aminomethyl compound gave rise to a transiently stable (t(1/2)=4.6s) complex on its reaction with a class C beta-lactamase. The reactivity of the compounds against three low molecular weight DD-peptidases was also tested. Again, the methoxy and hydroxymethyl compounds proved to be quite good substrates with no sign of inhibitory complexes. The DD-peptidases reacted with one enantiomer (the compounds were prepared as racemates), presumably the D compound. The class C beta-lactamase reacted with both D and L enantiomers although it preferred the latter. The structural bases of these stereo-preferences were explored by reference to the crystal structure of the enzyme by molecular modeling studies. The aminomethyl compound was unreactive with the DD-peptidases, whereas the carboxy compound did not react with any of the above-mentioned enzymes. The inhibitory effects of the -OMe and -CH(2)OH substituents in beta-lactams apparently require a combination of the substituent and the pendant leaving group of the beta-lactam at the acyl-enzyme stage.  相似文献   

3.
Beta-lactamases are serine and metallo-dependent enzymes produced by the bacteria in defense against beta-lactam antibiotics. Production of class-A, class-B, and class-C enzymes by the bacteria make the use of beta-lactam antibiotics ineffective in certain cases. To overcome resistance to beta-lactam antibiotics, several beta-lactamase inhibitors such as clavulanic acid, sulbactam, and tazobactam are widely used in the clinic in combination with beta-lactam antibiotics. However, single point mutations within these enzymes have allowed bacteria to overcome the inhibitory effect of the commercially approved beta-lactamase inhibitors. Although the commercially available beta-lactamase inhibitor/beta-lactam antibiotic combinations are effective against class-A producing bacteria and many extended spectrum beta-lactamase (ESBL's) producing bacteria they are less effective against class-C enzymes expressing bacteria. To circumvent this problem, based on modeling studies several novel imidazole substituted 6-methylidene-penem derivatives were synthesized and tested against various beta-lactamase producing isolates. The present paper deals with the synthesis and structure-activity relationships (SAR) of these compounds.  相似文献   

4.
A series of aryl and arylmethyl beta-aryl-beta-ketophosphonates have been prepared as potential beta-lactamase inhibitors. These compounds, as fast, reversible, competitive inhibitors, were most effective (micromolar K(i) values) against the class D OXA-1 beta-lactamase but had less activity against the OXA-10 enzyme. They were also quite effective against the class C beta-lactamase of Enterobacter cloacae P99 but less so against the class A TEM-2 enzyme. Reduction of the keto group to form the corresponding beta-hydroxyphosphonates led to reduced inhibitory activity. Molecular modeling, based on the OXA-1 crystal structure, suggested interaction of the aryl groups with the hydrophobic elements of the enzyme's active site and polar interaction of the keto and phosphonate groups with the active site residues Ser 115, Lys 212 and Thr 213 and with the non-conserved Ser 258. Analysis of binding free energies showed that the beta-aryl and phosphonate ester aryl groups interacted cooperatively within the OXA-1 active site. Overall, the results suggest that quite effective inhibitors of class C and some class D beta-lactamases could be designed, based on the beta-ketophosphonate platform.  相似文献   

5.
'Beta-lactams' as beta-lactamase inhibitors   总被引:2,自引:0,他引:2  
The application of inhibitors to block the beta-lactamase destruction of penicillins and cephalosporins by resistant bacteria is a potentially useful way of improving the efficacy of established compounds. Certain semi-synthetic penicillins and cephalosporins have been found to be competitive inhibitors of selected beta-lactamases but an examination of streptomycete culture fluids has revealed two new types of beta-lactam compound: clavulanic acid, which is a progressive inactivator of a wide range of beta-lactamases, and the olivanic acids, which are both broad-spectrum antibiotics and potent beta-lactamase inhibitors. Penicillanic acid sulphone and 6-beta-bromopenicillanic acid have been shown to be significant inhibitors of beta-lactamase. The chemotherapeutic application of these compounds is discussed.  相似文献   

6.
Majumdar S  Adediran SA  Nukaga M  Pratt RF 《Biochemistry》2005,44(49):16121-16129
The production of beta-lactamases is an important component of bacterial resistance to beta-lactam antibiotics. These enzymes catalyze the hydrolytic destruction of beta-lactams. The class D serine beta-lactamases have, in recent years, been expanding in sequence space and substrate spectrum under the challenge of currently dispensed beta-lactams. Further, the beta-lactamase inhibitors now employed in medicine are not generally effective against class D enzymes. In this paper, we show that diaroyl phosphates are very effective inhibitory substrates of these enzymes. Reaction of the OXA-1 beta-lactamase, a typical class D enzyme, with diaroyl phosphates involves acylation of the active site with departure of an aroyl phosphate leaving group. The interaction of the latter with polar active-site residues is most likely responsible for the general reactivity of these molecules with the enzyme. The rate of acylation of the OXA-1 beta-lactamase by diaroyl phosphates is not greatly affected by the electronic effects of substituents, probably because of compensation phenomena, but is greatly enhanced by hydrophobic substituents; the second-order rate constant for acylation of the OXA-1 beta-lactamase by bis(4-phenylbenzoyl) phosphate, for example, is 1.1 x 10(7) s(-)(1) M(-)(1). This acylation reactivity correlates with the hydrophobic nature of the beta-lactam side-chain binding site of class D beta-lactamases. Deacylation of the enzyme is slow, e.g., 1.24 x 10(-)(3) s(-)(1) for the above-mentioned phosphate and directly influenced by the electronic effects of substituents. The effective steady-state inhibition constants, K(i), are nanomolar, e.g., 0.11 nM for the above-mentioned phosphate. The diaroyl phosphates, which have now been shown to be inhibitory substrates of all serine beta-lactamases, represent an intriguing new platform for the design of beta-lactamase inhibitors.  相似文献   

7.
The beta-lactam antibiotics act through their inhibition of D-alanyl-D-alanine transpeptidases (DD-peptidases) that catalyze the last step of bacterial cell wall synthesis. Bacteria resist beta-lactams by a number of mechanisms, one of the more important of which is the production of beta-lactamases, enzymes that catalyze the hydrolysis of these antibiotics. The serine beta-lactamases are evolutionary descendants of DD-peptidases and retain much of their structure, particularly at the active site. Functionally, beta-lactamases differ from DD-peptidases in being able to catalyze hydrolysis of acyl-enzyme intermediates derived from beta-lactams and being unable to efficiently catalyze acyl transfer reactions of D-alanyl-D-alanine terminating peptides. The class C beta-lactamase of Enterobacter cloacae P99 is closely similar in structure to the DD-peptidase of Streptomyces R61. Previous studies have demonstrated that the evolution of the beta-lactamase, presumably from an ancestral DD-peptidase similar to the R61 enzyme, included structural changes leading to rejection of the D-methyl substituent of the penultimate D-alanine residue of the DD-peptidase substrate. This seems to have been achieved by suitable placement of the side chain of Tyr 221 in the beta-lactamase. We show in this paper that mutation of this residue to Gly 221 produces an enzyme that more readily hydrolyzes and aminolyzes acyclic D-alanyl substrates than glycyl analogues, in contrast to the wild-type beta-lactamase; the mutant is therefore a more efficient DD-peptidase. Molecular modeling showed that the D-alanyl methyl group fits snugly into the space originally occupied by the Tyr 221 side chain and, in doing so, allows the bound substrate to assume a conformation similar to that on the R61 DD-peptidase, which has a hydrophobic pocket for this substituent. Another mutant of the P99 beta-lactamase, the extended spectrum GC1 enzyme, also has space available for a D-alanyl methyl group because of an extended omega loop. In this case, however, no enhancement of activity against D-alanyl substrates with respect to glycyl was observed. Accommodation of the penultimate D-alanyl methyl group is therefore necessary for efficient DD-peptidase activity, but not sufficient.  相似文献   

8.
Beta-lactamases are serine- and metal-dependent hydrolases, produced by the bacteria as defense against beta-lactam antibiotics. Commercially available inhibitors such as clavulanic acid, sulbactam, and tazobactam, which are currently used in the hospital settings, have reduced activity against newly emerging beta-lactamases. Bacterial production of diverse beta-lactamases including class-A, class-C, and ESBLs has motivated several research groups to search for inhibitors with a broader spectrum of activity. Previously, several novel 6-methylidene penems bearing, [5,5] [5,6] and [5,5,5] heterocycles have been synthesized in our laboratory and were shown to be potent and broad-spectrum beta-lactamase inhibitors. As a continuation of our previous work and in order to extend the structure-activity relationships, in this paper, we describe herein the synthesis and in vitro, in vivo activities of several novel 5,5,6-fused tricyclic heterocycles attached to the 6-methylidene penem core. The compounds presented in the current paper are potent and broad-spectrum inhibitors of the TEM-1 and AmpC beta-lactamases. In combination with piperacillin, their in vitro activities showed enhanced susceptibility to class A- and C-resistant strains studied in various bacteria. Some of the newly synthesized compounds such as 12a-c were shown to have in vivo activity in the acute lethal infection model against TEM-1 producing organisms. The 5,5,6-fused heterocyclic ring cores such as 21, 25, and 35 reported here are hitherto unknown in the literature.  相似文献   

9.
Beta-lactamases are the major resistance mechanism to beta-lactam antibiotics and pose a growing threat to public health. Recently, bacteria have become resistant to beta-lactamase inhibitors, making this problem pressing. In an effort to overcome this resistance, non-beta-lactam inhibitors of beta-lactamases were investigated for complementarity to the structure of AmpC beta-lactamase from Escherichia coli. This led to the discovery of an inhibitor, benzo(b)thiophene-2-boronic acid (BZBTH2B), which inhibited AmpC with a Ki of 27 nM. This inhibitor is chemically dissimilar to beta-lactams, raising the question of what specific interactions are responsible for its activity. To answer this question, the X-ray crystallographic structure of BZBTH2B in complex with AmpC was determined to 2.25 A resolution. The structure reveals several unexpected interactions. The inhibitor appears to complement the conserved, R1-amide binding region of AmpC, despite lacking an amide group. Interactions between one of the boronic acid oxygen atoms, Tyr150, and an ordered water molecule suggest a mechanism for acid/base catalysis and a direction for hydrolytic attack in the enzyme catalyzed reaction. To investigate how a non-beta-lactam inhibitor would perform against resistant bacteria, BZBTH2B was tested in antimicrobial assays. BZBTH2B significantly potentiated the activity of a third-generation cephalosporin against AmpC-producing resistant bacteria. This inhibitor was unaffected by two common resistance mechanisms that often arise against beta-lactams in conjunction with beta-lactamases. Porin channel mutations did not decrease the efficacy of BZBTH2B against cells expressing AmpC. Also, this inhibitor did not induce expression of AmpC, a problem with many beta-lactams. The structure of the BZBTH2B/AmpC complex provides a starting point for the structure-based elaboration of this class of non-beta-lactam inhibitors.  相似文献   

10.
Bacterial resistance to beta-lactam/beta-lactamase inhibitor combinations by single amino acid mutations in class A beta-lactamases threatens our most potent clinical antibiotics. In TEM-1 and SHV-1, the common class A beta-lactamases, alterations at Ser-130 confer resistance to inactivation by the beta-lactamase inhibitors, clavulanic acid, and tazobactam. By using site-saturation mutagenesis, we sought to determine the amino acid substitutions at Ser-130 in SHV-1 beta-lactamase that result in resistance to these inhibitors. Antibiotic susceptibility testing revealed that ampicillin and ampicillin/clavulanic acid resistance was observed only for the S130G beta-lactamase expressed in Escherichia coli. Kinetic analysis of the S130G beta-lactamase demonstrated a significant elevation in apparent Km and a reduction in kcat/Km for ampicillin. Marked increases in the dissociation constant for the preacylation complex, KI, of clavulanic acid (SHV-1, 0.14 microm; S130G, 46.5 microm) and tazobactam (SHV-1, 0.07 microm; S130G, 4.2 microm) were observed. In contrast, the k(inact)s of S130G and SHV-1 differed by only 17% for clavulanic acid and 40% for tazobactam. Progressive inactivation studies showed that the inhibitor to enzyme ratios required to inactivate SHV-1 and S130G were similar. Our observations demonstrate that enzymatic activity is preserved despite amino acid substitutions that significantly alter the apparent affinity of the active site for beta-lactams and beta-lactamase inhibitors. These results underscore the mechanistic versatility of class A beta-lactamases and have implications for the design of novel beta-lactamase inhibitors.  相似文献   

11.
Hugonnet JE  Blanchard JS 《Biochemistry》2007,46(43):11998-12004
Members of the beta-lactam class of antibiotics, which inhibit the bacterial d,d-transpeptidases involved in cell wall biosynthesis, have never been used systematically in the treatment of Mycobacterium tuberculosis infections because of this organism's resistance to beta-lactams. The critical resistance factor is the constitutive production of a chromosomally encoded, Ambler class A beta-lactamase, BlaC in M. tuberculosis. We show that BlaC is an extended spectrum beta-lactamase (ESBL) with high levels of penicillinase and cephalosporinase activity as well as measurable activity with carbapenems, including imipenem and meropenem. We have characterized the enzyme's inhibition by three FDA-approved beta-lactamase inhibitors: sulbactam, tazobactam, and clavulanate. Sulbactam inhibits the enzyme competitively and reversibly with respect to nitrocefin. Tazobactam inhibits the enzyme in a time-dependent manner, but the activity of the enzyme reappears due to the slow hydrolysis of the covalently acylated enzyme. In contrast, clavulanate reacts with the enzyme quickly to form hydrolytically stable, inactive forms of the enzyme that have been characterized by mass spectrometry. Clavulanate has potential to be used in combination with approved beta-lactam antibiotics to treat multi-drug resistant (MDR) and extremely drug resistant (XDR) strains of M. tuberculosis.  相似文献   

12.
6- and 7-Carboxy-3-phenylacetamido-3H-1-benzofuran-2-one have been synthesized as potential beta-lactamase substrates and/or inhibitors. These compounds were prepared by lactonization of the corresponding, appropriately substituted phenylglycines. The latter compounds were prepared by either the Strecker or the Bücherer-Berg method. The benzofuran-2-ones were less stable in aqueous solution than the analogous acyclic phenaceturate esters but comparably stable to analogous benzopyran-2-ones. They differed from the latter compounds however in that the C-3 hydrogen of the furan-2-ones, adjacent to the lactone carbonyl group, was distinctly acidic; 7-carboxy-3-phenylacetamido-3H-1-benzofuran-2-one exists largely as an enolate at pH 7.5. The furan-2-ones were beta-lactamase substrates with reactivity very similar to the analogous acyclic phenaceturates. They were not, however, DD-peptidase inhibitors and are thus unlikely to have antibiotic activity. The structural basis for these observations is discussed.  相似文献   

13.
Metallo-β-lactamase from Bacillus anthracis (Bla2) catalyzes the hydrolysis of β-lactam antibiotics which are commonly prescribed to combat bacterial infections. Bla2 contributes to the antibiotic resistance of this bacterium. An understanding of it is necessary to design potential inhibitors that can be introduced with current antibiotics for effective eradication of anthrax infections. We have purified Bla2 using Ni2+-affinity chromatography with over 140-fold increase in activity with a yield of 3.5%. The final specific activity was 19,000 units/mg. Purified Bla2 displays different K m , V max , and (k cat /K M) with penicillin G and cephalexin as substrates and is also sensitive to pH, with maximum activity between pH 7.0–9.0. The IC50 (50% inhibition concentration) value of EDTA against Bla2 is 630 nM, which can be understood by observing its three-dimensional interaction with the enzyme.  相似文献   

14.
Resistance to antibiotics in bacteria, is one of the major problems of mankind. Each year, a large number of patients due to infection, lose their lives. One of the main mechanisms of antibiotic resistance is beta-lactamase secretion. This enzyme hydrolyzes the amide bond of a lactam ring in beta-lactam antibiotics. Bacillus licheniformis is a mesophilic gram-positive bacterium, which has a high potential to produce beta-lactamase class A. In this study, the inhibitory effects of some malate analogous were studied by in vitro and in vivo studies. In addition, the effects of inhibitor binding on beta-lactamase were studied using MD simulations. Our results showed that diethyl malate and 1-methyl malate can decrease the MIC value of benzyl penicillin by sixteen and eight-fold, respectively. Data derived from in vitro studies revealed that decrease in MIC values is correlated with beta-lactamase inhibition. Molecular docking studies predicted the binding mode of inhibitors with the beta-lactamase active site. The structural analysis from MD simulations exhibits that binding of citrate and diethyl malate causes earlier equilibrium of beta-lactamase. After binding, the fluctuation of Ser 70 is also decreased. Based on our data, diethyl malate can be used to design the potent inhibitor against beta-lactamase class A.  相似文献   

15.
Incompatibility group P-1 plasmids with the bla+ genotype were transferred from various Escherichia coli strains to Pseudomonas acidovorans strain 29. When resistance to ampicillin was used as the criterion, none of these plasmids appeared able to express their Bla+ phenotype in this host. When the plasmids were subsequently transferred back from these ampicillin-sensitive P. acdiovorans transcipients to E. coli strains, it was found that the Bla+ phenotype was again expressed. Although beta-lactamase was not detected in cultures of P. acidovorans transcipients, macroiodometric determinations of beta-lactamase activity made on broken cell suspensions revealed that beta-lactamase was indeed synthesized. It was concluded that P. acidovorans strain 29 allows expression of the bla gene within the cell but that this organism is unable to excrete the enzyme.  相似文献   

16.
Five 6-(1-hydroxyalkyl)penam sulfone derivatives and two 6-(hydroxymethyl)penams were synthesized for beta-lactamase inhibitor screens. The substituent effects and stereochemical requirements of 6alpha- and 6beta-(1-hydroxyalkyl) groups for the biological activity of penam sulfone derivatives were investigated. Of these substituents, only the 6beta-hydroxymethyl group of 15 improved the activity of sulbactam against both TEM-1 and AmpC beta-lactamases. The sulfone moiety is required for the enhancement of the beta-lactamase inhibitory activity. 6Beta-hydroxymethylsulbactam (15) was able to restore the activity of piperacillin in vitro and in vivo against various beta-lactamase producing microorganisms.  相似文献   

17.
J Rahil  R F Pratt 《Biochemistry》1992,31(25):5869-5878
The class C serine beta-lactamase of Enterobacter cloacae P99 was inhibited by a series of aryl methylphosphonate monoester monoanions. The effectiveness of these inhibitors was promoted by an acylamido substituent on the methyl group and a good leaving group at phosphorus. The former preference suggests that noncovalent interaction of these inhibitors with the enzyme resembles that of substrates, while the latter suggests that nucleophilic displacement at phosphorus occurs as part of the inhibition mechanism. The truth of the latter proposition was confirmed by observation of release of 1 equiv of phenol concomitant with inhibition and of the presence of an equivalent amount of 14C-label on the enzyme after inhibition by a 14C-labeled phosphonate. The hydrolytically inert nature of the enzyme-inhibitor adduct, and its 31P chemical shift, suggested that O-phosphonylation of the enzyme had occurred. Although, by analogy with substrates, one might expect that the hydroxyl of the active site serine residue would be covalently modified by these inhibitors, successive alkali and acid treatment of the enzyme-inhibitor adduct generated no pyruvate. Instead, 1 equiv of lysinoalanine was found. This product was rationalized to arise through intramolecular capture by an adjacent lysine amine group of the dehydroalanine residue produced by alkali treatment of an O-phosphonylated serine residue. One equivalent of lysinoalanine was also produced by alkali treatment of the enzyme that had been inhibited by 6 beta-bromopenicillanic acid, a mechanism-based inhibitor known to acylate the hydroxyl group of the active site serine residue. It is therefore likely that the aryl phosphonates phosphonylate this residue. These compounds should be useful as beta-lactamase active site titrants and as sources of fresh insight into the chemical properties of the active site. The significant mechanistic features of the inhibition, in particular its strong leaving group dependence and the distinctive ability of the beta-lactamase active site to stabilize a dianionic transition state containing a pentacoordinated phosphorus, are discussed with respect to the active site structure. The comparison with phosph(or/on)yl inhibitors of serine proteinases is made, and the mechanism-based features of inhibition of serine hydrolases by phosph(on)ates are noted.  相似文献   

18.
I Trehan  B M Beadle  B K Shoichet 《Biochemistry》2001,40(27):7992-7999
Beta-lactamases hydrolyze beta-lactam antibiotics, including penicillins and cephalosporins; these enzymes are the most widespread resistance mechanism to these drugs and pose a growing threat to public health. beta-Lactams that contain a bulky 6(7)alpha substituent, such as imipenem and moxalactam, actually inhibit serine beta-lactamases and are widely used for this reason. Although mutant serine beta-lactamases have arisen that hydrolyze beta-lactamase resistant beta-lactams (e.g., ceftazidime) or avoid mechanism-based inhibitors (e.g., clavulanate), mutant serine beta-lactamases have not yet arisen in the clinic with imipenemase or moxalactamase activity. Structural and thermodynamic studies suggest that the 6(7)alpha substituents of these inhibitors form destabilizing contacts within the covalent adduct with the conserved Asn152 in class C beta-lactamases (Asn132 in class A beta-lactamases). This unfavorable interaction may be crucial to inhibition. To test this destabilization hypothesis, we replaced Asn152 with Ala in the class C beta-lactamase AmpC from Escherichia coli and examined the mutant enzyme's thermodynamic stability in complex with imipenem and moxalactam. Consistent with the hypothesis, the Asn152 --> Ala substitution relieved 0.44 and 1.10 kcal/mol of strain introduced by imipenem and moxalactam, respectively, relative to the wild-type complexes. However, the kinetic efficiency of AmpC N152A was reduced by 6300-fold relative to that of the wild-type enzyme. To further investigate the inhibitor's interaction with the mutant enzyme, the X-ray crystal structure of moxalactam in complex with N152A was determined to a resolution of 1.83 A. Moxalactam in the mutant complex is significantly displaced from its orientation in the wild-type complex; however, moxalactam does not adopt an orientation that would restore competence for hydrolysis. Although Asn152 forces beta-lactams with 6(7)alpha substituents out of a catalytically competent configuration, making them inhibitors, the residue is essential for orienting beta-lactam substrates and cannot simply be replaced with a much smaller residue to restore catalytic activity. Designing beta-lactam inhibitors that interact unfavorably with this conserved residue when in the covalent adduct merits further investigation.  相似文献   

19.
N J Bernstein  R F Pratt 《Biochemistry》1999,38(32):10499-10510
beta-Lactam antibiotics are generally thought to inhibit their target enzymes, the bacterial cell wall-synthesizing DD-peptidases, because of their resemblance to D-alanyl-D-alanine peptides. Although a favorable conformation of the latter does structurally resemble the beta-lactams with respect to backbone conformation, a significant difference is the presence of a D-methyl substituent on the penultimate alanine residue of the cell wall peptide. A classical beta-lactam antibiotic has a hydrogen in the corresponding position. In the process of evolution of a beta-lactamase from a DD-peptidase, it seems likely that this D-methyl group would be selected against, to ensure that the former enzyme would hydrolyze beta-lactams rather than peptides. In this paper, the effect of the penultimate D-alanine residue (as opposed to a glycine residue) has been examined in peptide substrates of a present-day DD-peptidase and a beta-lactamase. The peptides N-(phenylacetyl)-D-alanyl-D-phenylalanine and N-(phenylacetyl)glycyl-D-phenylalanine were used as a test pair against the DD-peptidase of Streptomyces R61 and the structurally very similar class C beta-lactamase of Enterobacter cloacae P99. The kinetics of turnover of both of these substrates were determined for both enzymes. To quantify the partitioning of the acyl-enzyme intermediate, the aminolysis by D-phenylalanine of a cognate pair of depsipeptides was also studied. Thus, free energy-reaction coordinate diagrams were constructed for turnover of both peptides by both enzymes. Comparison of these profiles showed that the D-methyl group is preferred over hydrogen by the DD-peptidase at all stages of catalysis (acyl-enzyme and acylation and deacylation transition states), whereas the beta-lactamase selects against the D-methyl group only at the peptide acylation transition state. A process of evolution by uniform dissociation of the methyl group by the beta-lactamase has apparently occurred. These results were explored structurally by computational models of the acylation tetrahedral intermediates. A methyl group pocket on the DD-peptidase, less favorable on the beta-lactamase, was identified. The interaction of the leaving group, the terminal D-alanine residue, with the two enzymes was interesting, since it seemed that different positively charged active site residues were directly associated with the carboxylate, Lys 315 in the beta-lactamase and Arg 285 (rather than His 298) in the case of the DD-peptidase. The problems posed by larger substituents on the penultimate residue of the peptide, and in particular by the heterocyclic substituent present in a bicyclic beta-lactam, were analyzed. Qualitative and quantitative analysis of the models support the proposed importance of the penultimate D-alanine in beta-lactamase evolution.  相似文献   

20.
The steady rise of the antimicrobial resistance is a major global threat to human health that requires the urgent need for novel antibiotics. In this work we report the synthesis of a small library of 3-subsituted-5-arylidene tetramic acids in order to investigate the scope of our previously established methodology via an intermediate oxazolone and their antimicrobial activity. From this series of 14 tetramic acids, 11 derivatives are novel and one of them is a Schiff base, which was structurally characterized with single-crystal X-ray analysis and NMR spectroscopy. The compounds incorporating a lipophilic acyl group at carbon-3 of the ring showed moderate to high activity with minimum inhibitory activity of 4–32 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA), accompanied by no human cell toxicity and hemolytic activity within the tested concentration range. The substituent at para position of the aryl ring seemed to have no or little effect on the antimicrobial activity of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号