首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We examined, by using a specific PGE receptor subtype EP4 agonist and antagonist, the involvement of EP4 receptors in duodenal HCO(3)(-) secretion induced by PGE(2) and mucosal acidification in rats. Mucosal acidification was achieved by exposing a duodenal loop to 10 mM HCl for 10 min, and various EP agonists were given intravenously 10 min before the acidification. Secretion of HCO(3)(-) was dose-dependently stimulated by AE1-329 (EP4 agonist), the maximal response being equivalent to that induced by sulprostone (EP1/EP3 agonist) or PGE(2). The stimulatory action of AE1-329 and PGE(2) but not sulprostone was attenuated by AE3-208, a specific EP4 antagonist. This antagonist also significantly mitigated the acid-induced HCO(3)(-) secretion. Coadministration of sulprostone and AE1-329 caused a greater secretory response than either agent alone. IBMX potentiated the stimulatory action of both sulprostone and AE1-329, whereas verapamil mitigated the effect of sulprostone but not AE1-329. Chemical ablation of capsaicin-sensitive afferent neurons did not affect the response to any of the EP agonists used. We conclude that EP4 receptors are involved in the duodenal HCO(3)(-) response induced by PGE(2) or acidification in addition to EP3 receptors. The process by which HCO(3)(-) is secreted through these receptors differs regarding second-messenger coupling. Stimulation through EP4 receptors is mediated by cAMP, whereas that through EP3 receptors is regulated by both cAMP and Ca(2+); yet there is cooperation between the actions mediated by these two receptors. The neuronal reflex pathway is not involved in stimulatory actions of these prostanoids.  相似文献   

2.
We examined the role of prostaglandin E (EP) receptor subtypes in the regulation of gastric acid secretion in the rat. Under urethane anesthesia, the stomach was superfused with saline, and the acid secretion was determined at pH 7.0 by adding 50 mM NaOH. The acid secretion was stimulated by intravenous infusion of histamine or pentagastrin. Various EP agonists were administered intravenously, whereas EP antagonists were given subcutaneously 30 min or intravenously 10 min before EP agonists. PGE(2) suppressed the acid secretion stimulated by either histamine or pentagastrin in a dose-dependent manner. The acid inhibitory effect of PGE(2) was mimicked by sulprostone (EP(1)/EP(3) agonist) but not butaprost (EP(2) agonist) or AE1-329 (EP(4) agonist). The inhibitory effect of sulprostone, which was not affected by ONO-8711 (EP(1) antagonist), was more potent against pentagastrin- (50% inhibition dose: 3.6 mug/kg) than histamine-stimulated acid secretion (50% inhibition dose: 18.0 mug/kg). Pentagastrin increased the luminal release of histamine, and this response was also inhibited by sulprostone. On the other hand, AE1-329 (EP(4) agonist) stimulated the acid secretion in vagotomized animals with a significant increase in luminal histamine. This effect of AE1-329 was totally abolished by cimetidine as well as AE3-208 (EP(4) antagonist). These results suggest that PGE(2) has a dual effect on acid secretion: inhibition mediated by EP(3) receptors and stimulation through EP(4) receptors. The former effect may be brought about by suppression at both parietal and enterochromaffin-like cells, whereas the latter effect may be mediated by histamine released from enterochromaffin-like cells.  相似文献   

3.
Prostaglandin E(2) (PGE(2)), an important mediator of the inflammatory response, acts centrally to elicit sympathetic excitation. PGE(2) acts on at least four E-class prostanoid (EP) receptors known as EP(1), EP(2), EP(3), and EP(4). Since PGE(2) production within the brain is ubiquitous, the different functions of PGE(2) depend on the expression of these prostanoid receptors in specific brain areas. The type(s) and location(s) of the EP receptors that mediate sympathetic responses to central PGE(2) remain unknown. We examined this question using PGE(2), the relatively selective EP receptor agonists misoprostol and sulprostone, and the available selective antagonists for EP(1), EP(3), and EP(4). In urethane-anesthetized rats, intracerebroventricular (ICV) administration of PGE(2), sulprostone or misoprostol increased renal sympathetic nerve activity, blood pressure, and heart rate. These responses were significantly reduced by ICV pretreatment with the EP(3) receptor antagonist; the EP(1) and EP(4) receptor antagonists had little or no effect. ICV PGE(2) or misoprostol increased the discharge of neurons in the hypothalamic paraventricular nucleus (PVN). ICV misoprostol increased the c-Fos immunoreactivity of PVN neurons, an effect that was substantially reduced by the EP(3) receptor antagonist. Real-time PCR detected EP(3) receptor mRNA in PVN, and immunohistochemical studies revealed sparsely distributed EP(3) receptors localized in GABAergic terminals and on a few PVN neurons. Direct bilateral PVN microinjections of PGE(2) or sulprostone elicited sympathoexcitatory responses that were significantly reduced by the EP(3) receptor antagonist. These data suggest that EP(3) receptors mediate the central excitatory effects of PGE(2) on PVN neurons and sympathetic discharge.  相似文献   

4.
We investigated prostaglandin E (EP) receptor subtypes responsible for the HCO3- stimulatory action of prostaglandin E2 (PGE2) in the gastroduodental mucosa, by examining the effects of various prostanoids with subtype specific EP receptor agonists in rats and those of PGE2 in knockout mice lacking EP1 or EP3 receptors. In rats, gastric HCO3- secretion was stimulated by i.v. administration of PGE2, 17-phenyl PGE2 the selective EP1 agonist as well as sulprostone the EP1 and EP3 agonist, but was not affected by other EP agonists such as butaprost the selective EP2 agonist, ONO-NT-012 the selective EP3 agonist or 11-deoxy PGE1 the EP3 and EP4 agonist. In contrast, the HCO3- secretion in rat duodenums was stimulated by PGE2, sulprostone, ONO-NT-012 as well as 11-deoxy PGE1 but not affected by either 17-phenyl PGE2 or butaprost. The HCO stimulatory effect of sulprostone in the stomach was significantly inhibited by ONO-AE-829, the selective EP1 antagonist. On the other hand, PGE2 applied topically to the mucosa for 10 min caused a dose-dependent increase of HCO3- secretion in both the stomach and duodenum of wild-type mice. The HCO3- stimulatory action of PGE2 in the stomach was also observed dose-dependently in knockout mice lacking EP3-receptors but was absent in EP1-receptor knockout mice, while the stimulatory effect in the duodenum was observed in EP1-receptor knockout mice, similar to wild-type animals, but not in knockout mice lacking EP3-receptors. These results indicate that PGE2 stimulates HCO3- secretion via different EP receptor subtypes in the stomach and duodenum; the former is mediated by EP1-receptors, while the latter mediated by EP3-receptors.  相似文献   

5.
Rank order of agonist potency for activation of adenylate cyclase by the naturally occurring prostanoids PGE2, PGF2 alpha, PGD2, the stable PGI2 analogue iloprost, and the TXA2 mimetic U 46619, provides evidence for the existence of a distinct PGE-receptor on guinea-pig duodenal enterocytes. The PGE-receptor is likely to be of the EP2-subtype since the specific EP2-agonist 11-deoxy-PGE1 stimulated adenylate cyclase activity with a 20-fold higher potency than the EP1-agonist 17-phenyltrinor-PGE2 and the EP3-agonists MB 28767 and GR 63799. In addition, sulprostone (acting on both EP1- and EP3-receptors) was ineffective. Since the specific EP1-antagonist SC 19220 did not inhibit PGE2-stimulated adenylate cyclase activity, the involvement of EP1-receptors could be further excluded. The synthetic prostaglandin E-analogues misoprostol and nocloprost stimulated adenylate cyclase almost identically, though they were about 10-fold less potent than the natural PGE2.  相似文献   

6.
Costimulatory molecules play important roles in immune responses. In the present study we investigated the effects of PGE(2) on the expression of ICAM-1, B7.1, and B7.2 on monocytes in IL-18-stimulated PBMC using FACS analysis. Addition of PGE(2) to PBMC inhibited ICAM-1 and B7.2 expression elicited by IL-18 in a concentration-dependent manner. We examined the involvement of four subtypes of PGE(2) receptors, EP1, EP2, EP3, and EP4, in the modulatory effect of PGE(2) on ICAM-1 and B7.2 expression elicited by IL-18, using subtype-specific agonists. ONO-AE1-259-01 (EP2R agonist) inhibited IL-18-elicited ICAM-1 and B7.2 expression in a concentration-dependent manner with a potency slightly less than that of PGE(2), while ONO-AE1-329 (EP4R agonist) was much less potent than PGE(2). The EP2/EP4R agonist 11-deoxy-PGE(1) mimicked the effect of PGE(2) with the same potency. ONO-D1-004 (EP1R agonist) and ONO-AE-248 (EP3R agonist) showed no effect on IL-18-elicited ICAM-1 or B7.2 expression. These results indicated that EP2 and EP4Rs were involved in the action of PGE(2). Dibutyryl cAMP and forskolin down-regulated ICAM-1 and B7.2 expression in IL-18-stimulated monocytes. As EP2 and EP4Rs are coupled to adenylate cyclase, we suggest that PGE(2) down-regulates IL-18-induced ICAM-1 and B7.2 expression in monocytes via EP2 and EP4Rs by cAMP-dependent signaling pathways. The fact that anti-B7.2 as well as anti-ICAM-1 Ab inhibited IL-18-induced cytokine production implies that PGE(2) may modulate the immune response through regulation of the expression of particular adhesion molecules on monocytes via EP2 and EP4Rs.  相似文献   

7.
Prostaglandin E(2) (PGE(2)) exerts diverse biological effects through four G-protein-coupled cell surface receptor subtypes, EP1-4. This study's objective was to characterize EP1-4 receptor mRNA expression within pregnant guinea pig myometrium during early implantation stage (gestation day [GD] 6) and late stage gestation (GD 50) and evaluate in vitro contractile activity of receptor subtype selective agonists. Using RT-PCR, qualitative gene expression patterns of EP2, EP3, and EP4 mRNA were detected in the myometrium and remained unchanged between the gestational ages. EP1 mRNA remained undetected in pregnant tissue. In vitro contractile activity was evaluated in GD 6 and GD 50 myometrium using vehicle and EP agonists PGE(2), 17-phenyl trinor PGE(2), sulprostone, misoprostol, and CP-533,536. All spasmogens in pregnant myometrium were EP1/EP3 selective agonists, though likely acting via EP3 receptors in this test model. CP-533,536--a highly selective EP2 receptor agonist--and the vehicle failed to induce myometrial contraction at both gestational ages.  相似文献   

8.
Cyclooxygenase-2 (COX-2) is constitutively expressed and highly regulated in the thick ascending limb (TAL). As COX-2 inhibitors (Coxibs) increase COX-2 expression, we tested the hypothesis that a negative feedback mechanism involving PGE(2) EP3 receptors regulates COX-2 expression in the TAL. Sprague-Dawley rats were treated with a Coxib [celecoxib (20 mg·kg(-1)·day(-1)) or rofecoxib (10 mg·kg(-1)·day(-1))], with or without sulprostone (20 μg·kg(-1)·day(-1)). Sulprostone was given using two protocols, namely, previous to Coxib treatment (prevention effect; Sulp7-Coxib5 group) and 5 days after initiation of Coxib treatment (regression effect; Coxib10-Sulp5 group). Immunohistochemical and morphometric analysis revealed that the stained area for COX-2-positive TAL cells (μm(2)/field) increased in Coxib-treated rats (Sham: 412 ± 56.3, Coxib: 794 ± 153.3). The Coxib effect was inhibited when sulprostone was used in either the prevention (285 ± 56.9) or regression (345 ± 51.1) protocols. Western blot analysis revealed a 2.1 ± 0.3-fold increase in COX-2 protein expression in the Coxib-treated group, an effect abolished by sulprostone using either the prevention (1.2 ± 0.3-fold) or regression (0.6 ± 0.4-fold vs. control, P < 0.05) protocols. Similarly, the 6.4 ± 0.6-fold increase in COX-2 mRNA abundance induced by Coxibs (P < 0.05) was inhibited by sulprostone; prevention: 0.9 ± 0.3-fold (P < 0.05) and regression: 0.6 ± 0.1 (P < 0.05). Administration of a selective EP3 receptor antagonist, L-798106, also increased the area for COX-2-stained cells, COX-2 mRNA accumulation, and protein expression in the TAL. Collectively, the data suggest that COX-2 levels are regulated by a novel negative feedback loop mediated by PGE(2) acting on its EP3 receptor in the TAL.  相似文献   

9.
In this study, we investigated the signaling pathway involved in IL-6 production caused by peptidoglycan (PGN), a cell wall component of the Gram-positive bacterium, Staphylococcus aureus, in RAW 264.7 macrophages. PGN caused concentration- and time-dependent increases in IL-6, PGE(2), and cAMP production. PGN-mediated IL-6 production was inhibited by a nonselective cyclooxygenase (COX) inhibitor (indomethacin), a selective COX-2 inhibitor (NS398), a PGE(2) (EP2) antagonist (AH6809), a PGE(4) (EP4) antagonist (AH23848), and a protein kinase A (PKA) inhibitor (KT5720), but not by a nonselective NO synthase inhibitor (N(G)-nitro-l-arginine methyl ester). Furthermore, PGE(2), an EP2 agonist (butaprost), an EP2/PGE(3) (EP3)/EP4 agonist (misoprostol), and misoprostol in the presence of AH6809 all induced IL-6 production, whereas an EP1/EP3 agonist (sulprostone) did not. PGN caused time-dependent activations of IkappaB kinase alphabeta (IKKdbeta) and p65 phosphorylation at Ser(276), and these effects were inhibited by NS398 and KT5720. Both PGE(2) and 8-bromo-cAMP also caused IKKdbeta kinase alphabeta phosphorylation. PGN resulted in two waves of the formation of NF-kappaB-specific DNA-protein complexes. The first wave of NF-kappaB activation occurred at 10-60 min of treatment, whereas the later wave occurred at 2-12 h of treatment. The PGN-induced increase in kappaB luciferase activity was inhibited by NS398, AH6809, AH23848, KT5720, a protein kinase C inhibitor (Ro31-8220), and a p38 MAPK inhibitor (SB203580). These results suggest that PGN-induced IL-6 production involves COX-2-generated PGE(2), activation of the EP2 and EP4 receptors, cAMP formation, and the activation of PKA, protein kinase C, p38 MAPK, IKKdbeta, kinase alphabeta, p65 phosphorylation, and NF-kappaB. However, PGN-induced NO release is not involved in the signaling pathway of PGN-induced IL-6 production.  相似文献   

10.
We studied the modulation by protein kinase C (PKC) of the cyclic AMP (cAMP) accumulation induced by prostaglandin (PG) E2 in rat neonatal microglial cultures. Short pretreatment of microglia with phorbol 12-myristate 13-acetate (PMA) or 4beta-phorbol 12,13-didecanoate, which activate PKC, but not with the inactive 4alpha-phorbol 12,13-didecanoate, substantially reduced cAMP accumulation induced by 1 microM PGE2. The action of PMA was dose and time dependent, and the maximal inhibition (approximately 85%) was obtained after 10-min preincubation with 100 nM PMA. The inhibitory effect of PMA was mimicked by diacylglycerol and was prevented by the PKC inhibitor calphostin C. As PMA did not affect isoproterenol- or forskolin-stimulated cAMP accumulation, we investigated whether activation of PKC decreased cAMP production by acting directly at PGE2 EP receptors. Neither sulprostone (10(-9)-10(-5) M), a potent agonist at EP3 receptors (coupled to adenylyl cyclase inhibition), nor 17-phenyl-PGE2 (10(-6)-10(-5) M), an agonist of EP1 receptors, modified cAMP accumulation induced by forskolin. On the contrary, 11-deoxy-16,16-dimethyl PGE2, which does not discriminate between EP2 and EP4 receptors, both coupled to the activation of adenylyl cyclase, and butaprost, a selective EP2 agonist, induced a dose-dependent elevation of cAMP that was largely reduced by PMA pretreatment, as in the case of PGE2. These results indicated EP2 receptors as a possible target of PKC and suggest that PKC-activating agents present in the pathological brain may prevent the cAMP-mediated microglia-deactivating function of PGE2.  相似文献   

11.
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1beta of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP(2), EP(3), and EP(4) receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1beta promoted the elaboration of G-CSF, which was augmented by PGE(2). Cicaprost (IP receptor agonist) was approximately equiactive with PGE(2), whereas PGD(2), PGF(2alpha), and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP(1) receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE(2), the EP receptor agonists 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3) selective), 17-phenyl-omega-trinor PGE(2) (EP(1) selective), ONO-AE1-259, and butaprost (both EP(2) selective) were full agonists at enhancing G-CSF release. AH 6809 (10 microM) and L-161,982 (2 microM), which can be used in HASMC as selective EP(2) and EP(4) receptor antagonists, respectively, failed to displace to the right the PGE(2) concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE(2)-induced G-CSF release. Augmentation of G-CSF release by PGE(2) was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE(2) facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP(2) and EP(4) prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.  相似文献   

12.
Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.  相似文献   

13.
Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE2 receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE2 synthesis was determined by mass spectrometry, cell proliferation by DNA [3H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE2 into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE2-dependent proliferation. Exogenously added PGE2 stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10-8 M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE2 was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE2 release, which stimulates cell proliferation via the EP1 receptor.  相似文献   

14.
We demonstrated that prostaglandin (PG) E2 aggravates gastric mucosal injury caused by histamine in rats, and investigated using various EP agonists which EP receptor subtype is involved in this phenomenon. Rats were used after 18 hr fasting. Histamine (80 mg/kg) dissolved in 10% gelatin, was given s.c., either alone or in combination with i.v. administration of PGE2 or various EP agonists such as 17-phenyl PGE2 (EP1), butaprost (EP2), sulprostone (EP1/EP3), ONO-NT012 (EP3) and ONO-AE1-329 (EP4). The animals were killed 4 hr later, and the mucosa was examined for lesions. The mucosal permeability was determined using Evans blue (1%). Histamine alone induced few lesions in the gastric mucosa within 4 hr. PGE2 dose-dependently worsened the lesions induced by histamine, the response being inhibited by tripelennamine but not cimetidine. The effect of PGE2 was mimicked by 17-phenyl PGE2 and sulprostone, but not other EP agonists, including EP2, EP3, and EP3/EP4 agonists. The mucosal vascular permeability was slightly increased by histamine, and this response was markedly enhanced by co-administration of 17-phenyl PGE2 as well as PGE2. The mucosal ulcerogenic and vascular permeability responses induced by histamine plus PGE2 were both suppressed by pretreatment with ONO-AE829, the EP1 antagonist. These results suggest that PGE2 aggravates histamine-induced gastric mucosal injury in rats. This action of PGE2 is mediated by EP1 receptors and functionally associated with potentiation of the increased vascular permeability caused by histamine through stimulation of H1-receptors.  相似文献   

15.
Prostaglandins (PG) E1, E2 and F2alpha induce bone resorption in isolated neonatal parietal bone cultures, and an associated increase in interleukin-6 (IL-6) production. Indomethacin had little effect on the response to PGE2, or the relatively non-selective EP receptor agonists 11-deoxy PGE1 and misoprostol, but blocked the effects of PGF2alpha and the F receptor agonist fluprostenol, indicating an indirect action via release of other prostaglandins. It is more likely that there is positive autoregulation of prostaglandins production in this preparation mediated via stimulation of F receptors. The effects of selective EP receptor agonists sulprostone (EP1,3) and 17-phenyl trinor PGE2(EP1), indicated the involvement of EP2 and/or EP4 receptors, which signal via cAMP. The relatively weak increase in IL-6 production by misoprostol (with respect to resorption) suggests that these responses are controlled by different combination of EP2 and EP4 receptors. The PKA activator, forskolin, induced small increases in bone resorption at lower concentrations (50-500 ng/ml) but a reversal of this effect, and inhibition of resorption induced by other stimuli (PTH, PGE2), at higher concentrations (0.5-5 microg/ml). IL-6 production was markedly increased only at the higher concentrations. The inhibitory effect of forskolin may be a calcitonin-mimetic effect. PMA induced both resorption and IL-6 production which were both blocked by indomethacin, indicating a role for PKC in the control of prostaglandin production.  相似文献   

16.
In inflamed joints of rheumatoid arthritis, PGE(2) is highly expressed, and IL-10 and IL-6 are also abundant. PGE(2) is a well-known activator of the cAMP signaling pathway, and there is functional cross-talk between cAMP signaling and the Jak-STAT signaling pathway. In this study, we evaluated the modulating effect of PGE(2) on STAT signaling and its biological function induced by IL-10 and IL-6, and elucidated its mechanism in THP-1 cells. STAT phosphorylation was determined by Western blot, and gene expression was analyzed using real-time PCR. Pretreatment with PGE(2) significantly augmented IL-10-induced STAT3 and STAT1 phosphorylation, as well as suppressors of cytokine signaling 3 (SOCS3) and IL-1R antagonist gene expression. In contrast, PGE(2) suppressed IL-6-induced phosphorylation of STAT3 and STAT1. These PGE(2)-induced modulating effects were largely reversed by actinomycin D. Pretreatment with dibutyryl cAMP augmented IL-10-induced, but did not change IL-6-induced STAT3 phosphorylation. Misoprostol, an EP2/3/4 agonist, and butaprost, an EP2 agonist, augmented IL-10-induced STAT3 phosphorylation and SOCS3 gene expression, but sulprostone, an EP1/3 agonist, had no effect. H89, a protein kinase A inhibitor, and LY294002, a PI3K inhibitor, diminished PGE(2)-mediated augmentation of IL-10-induced STAT3 phosphorylation. In this study, we found that PGE(2) selectively regulates cytokine signaling via increased intracellular cAMP levels and de novo gene expression, and these modulating effects may be mediated through EP2 or EP4 receptors. PGE(2) may modulate immune responses by alteration of cytokine signaling in THP-1 cells.  相似文献   

17.
PGE(2) is an endogenously synthesized inflammatory mediator that is over-produced in chronic inflammatory disorders such as allergic asthma. In this study, we investigated the regulatory effects of PGE(2) on mast cell degranulation and the production of cytokines relevant to allergic disease. Murine bone marrow-derived mast cells (BMMC) were treated with PGE(2) alone or in the context of IgE-mediated activation. PGE(2) treatment alone specifically enhanced IL-6 production, and neither induced nor inhibited degranulation and the release of other mast cell cytokines, including IL-4, IL-10, IFN-gamma, and GM-CSF. IgE/Ag-mediated activation of BMMC induced the secretion of IL-4, IL-6, and GM-CSF, and concurrent PGE(2) stimulation synergistically increased mast cell degranulation and IL-6 and GM-CSF, but not IL-4, production. A similar potentiation of degranulation and IL-6 production by PGE(2), in the context of IgE-directed activation, was observed in the well-established IL-3-dependent murine mast cell line, MC/9. RT-PCR analysis of unstimulated MC/9 cells revealed the expression of EP(1), EP(3), and EP(4) PGE receptor subtypes, including a novel splice variant of the EP(1) receptor. Pharmacological studies using PGE receptor subtype-selective analogs showed that the potentiation of IgE/Ag-induced degranulation and IL-6 production by PGE(2) is mediated through EP(1) and/or EP(3) receptors. Our results suggest that PGE(2) may profoundly alter the nature of the mast cell degranulation and cytokine responses at sites of allergic inflammation through an EP(1)/EP(3)-dependent mechanism.  相似文献   

18.
In this study, we investigated the role of PGE(2) in mouse mastocytoma P-815 cell adhesion to extracellular matrix proteins (ECMs) in vitro. We report that PGE(2) accelerated ProNectin F(TM) (a proteolytic fragment of fibronectin)-mediated adhesion, which was abolished by addition of the GRGDS peptide, an inhibitor of the RDG binding site of ProNectin F(TM). We show that the cAMP level and cAMP-regulated protein kinase (PKA) activity are critical mediators of this PGE(2) effect, because the cell-permeable cAMP analogue 8-Br-cAMP accelerated P-815 cell adhesion to ProNectin F(TM) and the pharmacological inhibitor of PKA, H-89, blocked PGE(2)-mediated adhesion. Consistent with mRNA expression of the G(s)-coupled EP4- and G(i)-coupled EP3-PGE receptor subtypes, P-815 cell adhesion was accelerated by treatment with a selective EP4 agonist, ONO-AE1-329, but not a selective EP1/EP3 agonist, sulprostone. However, simultaneous treatment with ONO-AE1-329 and sulprostone resulted in augmentation of both the cAMP level and cell adhesion. The augmentation of EP3-mediated cAMP synthesis was dose-dependent, without affecting the half-maximal concentration for EP4-mediated G(s)-activity, which was inhibited by a G(i) inhibitor, pertussis toxin. In conclusion, these findings suggest that PGE(2) accelerates RGD-dependent adhesion via cooperative activation between EP3 and EP4 and contributes to the recruitment of mast cells to the ECM during inflammation.  相似文献   

19.
The effects of PGE(2) on longitudinal smooth muscle, the intracellular mechanisms involved, and the localization of EP receptors were investigated in rabbit small intestine. PGE(2) evoked contractions in small intestine that were reduced by tetrodotoxin and hexamethonium. 17-Phenyl trinor PGE(2), sulprostone, misoprostol and 16,16-dimethyl PGE(2) evoked contractions. Butaprost did not modify spontaneous motility. AH 6809 reduced PGE(2) and 17-phenyl trinor PGE(2)-induced contractions. Verapamil, Ca(2+) free medium, staurosporine, forskolin, theophylline, and rolipram diminished, while IP-20 and H-89 increased PGE(2)-induced contractions. Western blot analysis showed protein bands of 41kDa for EP(1), 71kDa for EP(2) and 62kDa for EP(3) receptors. EP(1), EP(2) and EP(3) receptors were detected in neurons of the myenteric and submucosal ganglia, but only EP(3) receptors were found in smooth muscle layers. This study did not detect EP(4) receptor. PGE(2)-induced contractions would be mediated through EP(1) and EP(3) receptors, and voltage-dependent Ca(2+) channels, protein kinase C, and cAMP would be implicated in these responses.  相似文献   

20.
Mouse bone marrow-derived mast cells (BMMC), stimulated with stem cell factor, IL-1beta, and IL-10, secrete IL-6 and demonstrate a delayed phase of PGD(2) generation that is dependent upon the induced expression of PG endoperoxide synthase (PGHS)-2. We have examined the potential for exogenous prostanoids, acting in a paracrine fashion, and endogenous prostanoids, acting in an autocrine fashion, to regulate PGHS-2 induction and IL-6 secretion in mouse BMMC. Exogenous PGE(2), which acts through G protein-coupled receptors, and 15-deoxy-Delta(12,14)-PGJ(2), which is a ligand for peroxisome proliferator-activated receptor (PPAR)gamma, elicited a 2- to 3-fold amplification of PGHS-2 induction, delayed-phase PGD(2) generation, and IL-6 secretion in response to stem cell factor, IL-1beta, and IL-10. The effect of PGE(2) was reproduced by the E prostanoid (EP)1 receptor agonist 17-trinor-PGE(2), and the EP1/EP3 agonist, sulprostone, but not the EP2 receptor agonist, butaprost. Although BMMC express PPARgamma, the effects of 15-deoxy-Delta(12,14)-PGJ(2) were not reproduced by the PPARgamma agonists, troglitazone and ciglitazone. PGHS-2 induction, but not IL-6 secretion, was impaired in cPLA(2)-deficient BMMC. However, there was no impairment of PGHS-2 induction in BMMC deficient in hematopoietic PGD synthase or PGHS-1 in the presence or absence of the PGHS-2 inhibitor, NS-398. Thus, although exogenous prostanoids may contribute to amplification of the inflammatory response by augmenting PGD(2) generation and IL-6 secretion from mast cells, endogenous prostanoids do not play a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号