首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of ZnSO4 concentration on barley (Hordeum vulgare L.) microspore embryogenesis was investigated using cultivars of different androgenetic response. Concentrations from 0 (control) to 600 μM in the stress pre-treatment medium alone or in combination with 30 (control) to 600 μM in the embryo induction medium were assayed in anther culture. Incorporation of Zn2+ in the pre-treatment medium itself did not affect microspore embryogenesis. The optimum concentration in the stress pre-treatment and induction media was 180 μM for cultivars (cvs.) Igri and Reinette, and 90 μM for cv. Hop. A significant increase of 30 and 300% in cv. Igri and Reinette, respectively, were produced with 180 μM ZnSO4 in both the number of embryos and green plants. In order to confirm the effect of Zn2+ on microspore embryogenesis this micronutrient was incorporated in the induction medium of isolated microspore cultures of cv. Igri. Concentrations of 90–300 μM ZnSO4 resulted in an increase of 40–53% in the number of embryos and green plants. All these results indicate that the beneficial effect of Zn2+ is exerted mainly during the culture phase, increasing the number of embryos, leading to an increased number of green plants, but it had no effect on percentage of regeneration or green plants.  相似文献   

2.
Microspore culture is a very important and useful tool in plant breeding for haploid production and has been developed for many years.Brassica campestris (Brassica rapa L. ssp.oleifera) is an important oilseed crop, but it is relatively recalcitrant in tissue culture including microspore culture. The microspore culture in our laboratory is based on the Canadian protocol. Thirty genotypes ofB. campestris were included in this study; twenty produced embryos. The highest yield was 5930 embryos per 100 buds from Canadian genotype Cv-2, this result was one of the best that had been reported in microspore culture inB. campestris. The buds measuring 2.0 mm to 3.9 mm in length responded best to produce embryos, the optimum timing for microspore culture was confirmed to be during the mid-late to very-late uninucleate stage. The buds could be removed from either the main raceme or lateral racemes. Activated charcoal (150 mg l-1) was added to the liquid NLN medium, it promoted embryogenesis significantly; embryo development was faster and the embryo yield was significantly higher than those cultures without activated charcoal. The donor plant condition was considered an important factor influencing embryogenesis; older donor plants (older than five weeks) and a cold treatment are recommended.  相似文献   

3.
Summary Cytological analysis of microspore embryogenesis during in vitro culture reveals a high mortality in the first week and a latency phase of about one week before the first embryogénic mitosis. Genotypic differences observed during our wheat anther culture do not seem to originate at the induction level but are linked to the different abortion rates.  相似文献   

4.
Summary In wheat, plants may be regenerated from microspores via direct embryogenesis or organogenesis or embryogenesis from callus. Light and scanning electron microscopy were used to carefully study morphogenesis of microspore-derived plants from anther culture on modified 85D12 starch medium and to determine whether the plants were formed via organogenesis or embryogenesis. Our results indicate that plants are formed via embryogenesis from microspores. Evidence for embryogenesis included the formation of the epidermis and a suspensorlike structure (21 days after culture), followed by initiation of an apical meristem, differentiation of the scutellum, and embryo elongation. At 28 days in culture, the embryo possessed a well-developed scutellum and axis with suspensor. Embryogenesis was further confirmed by coleoptile and radicle elongation during germination when the embryos were cultured on medium supplemented with kinetin with or without coconut water. In this system, an average 67 microspores per responsive anther began cell division but only 3.69 embryos were formed per responsive anther after 6 wk. Adventitious embryos could be induced if the embryos, once formed, remained on initiation medium for 10 wk instead of being transferred to regeneration medium. Developmental stages which may be amenable to changes that could enhance plant production were identified. The potential to use this information to enhance plant production is discussed.  相似文献   

5.
Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding crosses with different microspore embryogenesis capacities were selected for n-butanol application in anther and isolated microspore cultures. Application of 0.1 % n-butanol after a mannitol stress treatment in anther culture significantly increased the number of embryos (up to almost twice) and green plants (from 1.7 to 3 times) in three low-responding cultivars: Albacete, Astoria and Majestic. No significant differences on microspore embryogenesis efficiency were observed in medium and high responding cultivars. The application of n-butanol treatment to isolated microspores from cold treated spikes in thirteen spring breeding crosses with a low or very low androgenetic response did not have a significant effect on the overall number of green plants. Nevertheless, an increase in the number of green plants was observed when 0.2 % n-butanol was applied in four out of seven low-responding crosses. Therefore, application of n-butanol could be routinely applied to anther cultures using mannitol treatment, in low-responding material. However, further studies are needed to determine optimal conditions in protocols using cold treatment and isolated microspore cultures.  相似文献   

6.
Low frequency of green plant production and albinism limits the use of isolated microspore culture (IMC) in cereal breeding programs. The present study was conducted in triticale and bread wheat IMC to increase the production of green plants and minimize albinism. NPB-99?+?10% Ficoll induction medium was supplemented with mitochondrial or plastid antioxidants, in a completely random design, to evaluate their contribution to successful microspore embryogenesis and green plant production. Each group of antioxidants was tested independently: first in triticale and then validated in various spring wheat genotypes. While the response differed by wheat genotype, induction medium supplemented with proline (10 mM) yielded a greater number of embryos/embryo-like structures and green plants in both triticale and wheat. No differences were found with respect to albinism in triticale or wheat except for the cv. Sadash. Among plastid antioxidants tested, glutathione (2 μM) proved to be the best antioxidant to increase embryo and green plant production. Salicylic acid also helped to reduce the number of albino plants in triticale and the wheat genotype SWS366. Overall, induction medium supplemented with proline or glutathione enhanced microspore embryogenesis in both triticale and wheat and increased the number of green plants in the recalcitrant genotypes.  相似文献   

7.
The role of ethylene in microspore embryogenesis was analyzed by studying the effect of cobalt ions, silver ions, methionine and Ethrel on the androgenic response of in vitro cultured anthers of Datura metel L. Cobalt and silver ions, provided in the form of cobalt chloride and silver nitrate, respectively, decreased the average number of embryos/plantlets developed per anther, at all the concentrations tested. In contrast, methionine (10−5–10−3 M ) and Ethrel (10−6 and 10−5 M ) stimulated embryo formation. The optimal enhancement was recorded at 10−5 M of both methionine and Ethrel.  相似文献   

8.
Summary In order to understand and limit albino plantlet formation during pollen embryogenesis in barley (Hordeum vulgare L. cv. Igri), plastid feature was followed during pollen embryogenesis under two anther culture conditions and compared to plastid development in the zygotic embryo. The first condition was characterized by cold pretreatment and maltose in the induction medium. Both embryos and calli were then obtained. During pollen embryo development, up to 30% of plastids had abnormal features. Disruptions mainly affected the plastid size, the feature of plastid envelopes, thylakoid and granum organization, as well as starch accumulation. In pollen calli, superficial cells had meristematic features. Up to 50% of plastids exhibited the above mentioned abnormalities. Internal cells were highly vacuolated with amyloplast-like plastids; envelopes had normal features but no internal membrane was detected. Pollen embryo-derived plantlets had a green-to-albino ratio (G/A) being equal to 1.0, whereas calli-derived embryos only formed albino plantlets. The second condition was characterized by mannitol pretreatment and the presence of both maltose and mannitol in the induction medium. No callus was formed but most of microspore-derived structures developed haploid embryos and then the green plantlets (200 plantlets per 100 responding anthers, G/A=9.4). In this case, plastid development in zygotic and pollen embryos were similar and almost no albino plantlets were formed.  相似文献   

9.
10.
The objective of this study was to determine the effect of induction medium osmolality on embryogenesis and green plant production in wheat and triticale. Isolated microspores of wheat and triticale were subjected to a range of osmolality (300–500 mOsm kg?1) using mannitol. In both species, the maximum number of embryo-like structures (ELS) and green plants were obtained at 350 mOsm kg?1 when the induction medium was supplemented with 9.1 g L?1 of mannitol. A sharp decline in microspore response was observed at higher osmolality. These results demonstrate the effect of osmolality on induction of ELS and production of green plants indicating that the process of microspore embryogenesis can be improved in wheat and triticale by increasing osmolality of the induction medium to 350 mOsm kg?1.  相似文献   

11.
Three methods of microspore culture were tested for the induction of microspore embryogenesis in Camellia japonica L. cv. Elegans. Culture was performed on 17 different media consisting of Murashige and Skoog (MS) and N6 basal media with different combinations of carbon, growth regulators, serine and glutamine. Microspore suspensions plated over solid MS medium containing 4.5 M 2,4-dichlorophenoxyacetic acid and 0.5 M kinetin, with sucrose (MS6) or glucose (MS9) were seen as the best culture conditions for induction of embryogenesis. The development of microspore derived proembryos was obtained in MS medium supplemented with 2.2 M N6-benzyladenine (MS10) and reached the highest level when the microspores were cultured in MS6 inducing medium. The development of microspore-derived embryos ceased at the maturation stage.Abbreviations BA N6-benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid  相似文献   

12.
The effect of growth regulators on induction of androgenesis in coconut was investigated using seven different growth regulators at various concentrations and combinations. Three auxins (1-naphthalene acetic acid—NAA, indoleacetic acid—IAA, picloram) and three cytokinins (2-isopentyl adenine-2-iP, kinetin, zeatin) were tested either alone or in combination with 2,4-dichlorophenoxyacetic acid (2,4-D), using modified Eeuwens Y3 liquid medium as the basal medium. Among the tested auxins, 100 μM NAA in combination with 100 μM 2,4-D enhanced the production of calli/embryos (123) whereas IAA and picloram showed negative and detrimental effects, respectively, for androgenesis induction over 100 μM 2,4-D alone. Kinetin and 2-iP enhanced the production of calli/embryos when 100 μM 2,4-D was present in the culture medium. Both cytokinins at 10 μM yielded the highest frequencies of embryos (113 and 93, respectively) whereas zeatin (1 or 2.5 μM) had no impact on microspore embryogenesis. When calli/embryos (produced from different treatments in different experiments) were sub-cultured in somatic embryo induction medium (Y3 medium containing 66 μM 2,4-D), followed by maturation medium (Y3 medium without growth regulators) and germination medium (Y3 medium containing 5 μM-6-benzyladenine—BA and 0.35 μM gibberellic acid—GA3), plantlets were regenerated at low frequencies (in most treatments ranging from 0% to 7%).  相似文献   

13.
Isolated microspore culture (IMC) has been used to develop doubled haploid lines and to generate homozygous lines in a single generation for varietal development. Phytosulfokine has been previously used in promoting cell growth and embryo development in various systems. In this study, phytosulfokine alpha (PSK-α) supplemented IMC induction medium was evaluated in triticale and wheat cultivars, and the production of embryo-like structures (ELS), green and albino plants were recorded. In addition, the contribution of ovary co-culture was also evaluated in IMC on a NPB99 + 10F induction medium. Over a range of concentrations up to 10?7M, PSK-α yielded more ELS and green plants in wheat and triticale cultivars at the highest dose, when compared to the control. It also minimized albinism in wheat cultivars, but not in triticale. Interestingly, 10?7M PSK-α also supported the formation of a large number of embryos and a few green plants in the absence of nursing ovaries.  相似文献   

14.
Scanning electron microscopy of microspore embryogenesis inBrassica spp.   总被引:1,自引:0,他引:1  
Scanning electron microscopy was employed to study and compare microspore embryogenesis in vitro with pollen development in planta inBrassica napus andB. oleracea. An exine with its specific pattern had already been formed, when microspores were released from tetrads. During subsequent pollen development, microspores increased in size and continued to strengthen the exine. Upon in vitro culture, all microspores, i.e., embryogenic and nonembryogenic, initially showed the same morphological features. After 24 h in culture, the microspores had increased in size. Thereafter, embryogenesis was indicated in some microspores by two different morphological changes. One featured an expansion in volume of the cell cluster around the germination aperture (type I), the other showed cell cluster volume expansion over the entire microspore surface (type II). Two-thirds of embryogenic microspores in bothB. napus andB. oleracea demonstrated type I development. When followed by fluorescence microscopy, in vitro culture of microspores revealed cultures with a high embryo frequency were those with a high frequency of symmetrical division.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy  相似文献   

15.
16.
An improved procedure for the induction, proliferation and regeneration of embryogenic callus from coffee leaf explants has been developed. The optimal culture conditions for callus induction and somatic embryogenesis yielded so-called high frequency embryogenic callus ofCoffea canephora P. ex Fr., Arabusta and Congusta, more rapidly and abundantly than other published procedures.Coffea arabica L. genotypes, however, were less responsive to the procedure. The highest multiplication rate of embryogenic callus in liquid culture, which avoided the differentiation of embryos, was obtained by culture at an inoculum density of 10 g callus 1-1 in a modified MS medium containing 4.5 M 2,4-dichlorophenoxyacetic acid, under 3 mol m-2 s-1 illumination, and subcultured every 7–10 days. The best long-term maintenance of embryogenic potential was obtained by culture of aggregates (250–1000 m in diameter) at an inoculum density of 5 g 1-1, with medium renewed every 3–4 weeks. Under these conditions, embryogenic potential ofC. canephora callus was maintained for over 2 years. Analysis of nutrients absorbed by the callus cultures demonstrated that half strength MS macro- and micro-salts were not depleted during at least 3 weeks of sustained culture. The highest regeneration of embryogenic callus required the omission of 2,4-D and a reduced culture density of 1 g 1-1. Under these conditions of culture, 1 g ofC. canephora or Arabusta callus produced 1.2 and 0.9×105 somatic embryos, respectively, after 8–10 weeks in liquid regeneration medium. This was an overall reduction of 4–6 months from explant to regenerant, when compared with other procedures.Abbreviations BA N6-benzyladenine - HFSE high frequency somatic embryogenesis - IAA indole-3-acetic acid - IBA indole-3-butyric acid - rpm rotations per minute - LFSE low frequency somatic embryogenesis - MS Murashige & Skoog medium - PPF photosynthetic photon flux - 2,4-D 2,4-dichlorophenoxyacetic acid - 2-iP 2-isopentenyladenine  相似文献   

17.
Brassica napus L. microspores at the late uninucleate to early binucleate stage of development can be induced in vitro to alter their development from pollen to embryo formation. High temperatures or other stress treatments are required to initiate this redirection process. The critical period for induction of microspore embryogenesis is within the first 8 h of temperature-stress imposition. During this period, which precedes the first embryogenic nuclear division, the process regulating the induction and sustainment of microspore embryogenesis is activated. A number of mRNAs and proteins, some of them possibly heat-shock proteins, appear in microspores during the commitment phase of the induction process.Abbreviations SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

18.
Summary Specific stress treatments applied to isolated tobacco (Nicotiana tabacum L.) microspores efficiently induced haploid embryo formation in vitro. A heat shock at 33 or 37°C in the presence of sugar, as well as sucrose-starvation at 25°C, resulted in the formation of embryogenic microspores. A combination of both treatments had an additive effect. Under optimal induction conditions all viable microspores in the culture were embryogenic and developed subsequently into pollen embryos by culture at 25°C in a sugar-containing medium, with induction frequencies of more than 70% with respect to the initial microspore population. A high fraction of the early pollen embryos continued their development in vitro, giving rise to haploid plants. In contrast to other available systems for microspore/pollen embryogenesis, the new protocol allows the production of homogeneous populations of embryogenic microspores and early globular embryos in large-scale cultures, without any purification step, and is therefore well suited for biochemical and molecular work.Abbreviations EDTA ethylenediaminetetraacetate - DAPI 4,6-diamidino-2-phenylindole  相似文献   

19.
《Plant science》1987,48(1):49-54
Embryogenesis in isolated microspores of wheat (Triticum aestivum L.) leading to plant regeneration has been established on modified liquid N6 medium (supplemented with 2,4-D, casein hydrolysate and Ficoll). Globular embryoids which were obtained after 6–8 weeks of culture of competent embryogenic microspores produced perfect embryoids when transferred to regeneration medium. Embryoids were differentiated to plants on other modified N6 agar medium (0.75% w/v agar, 20 g/l sucrose, 1 g/l myo-inositol, 8.8 μM 6-benzylaminopurine (BAP), 11.4 μM indoleacetic acid (IAA), 160 mg/l glutamine, 10 mg/l proline). Responses of microspores in regeneration and embryoid differentiation varied depending on the constituents of the media and genotypes used.  相似文献   

20.

Key message

Cefotaxime (100 mg/l) mitigate occasional gram negative bacterial contamination in wheat and triticale microspore culture and most importantly it increases cell growth and green plant production.

Abstract

Isolated microspore culture is a promising option to rapidly fix the product of meiotic recombination of F1 hybrids, in the process of varietal development. Clean culture and high embryogenesis rate are essential to commercial triticale and wheat microspore cultures. So, this study investigated (1) contaminants from isolated microspores cultures, (2) two antibiotics to control bacterial growth, and (3) the contribution of antibiotics to increased microspore-derived embryo-like structures (ELS), green and albino plants. Five species of bacteria were identified in contaminated cultures (Erwinia aphidicola, Pantoea agglomerans, Pseudomonas sp., Staphylococcus epidermis and Staphylococcus warneri) using fatty acid analysis and 16S ribosomal RNA sequences analysis, and yeast. Antibacterial susceptibility test using Cefotaxime and Vancomycin resulted in strong inhibition of 24 bacterial isolates, using Cefotaxime at 100 mg/l, but not Pseudomonas sp. Other antibiotic treatments inhibited bacterial growth at least partially. Microspore induction medium supplemented with the same antibiotics treatments resulted in successful microspore embryogenesis and green plant production. Antibiotic treatments were first tested in triticale and then validated in wheat cultivars AC Carberry and AC Andrew. Induction medium supplemented with Cefotaxime at 50 and 100 mg/l substantially increased the formation of ELS and green plants in triticale and wheat, respectively. Incidentally, it also affected the occurrence of albinism in all genotypes. Our results demonstrated dual purpose of Cefotaxime for isolated microspore culture, most importantly it increases cell growth and success of microspore cultures in triticale and wheat genotypes, but would also prevent accidental loss of cultures with most common bacterial contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号