首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oral administration of vanadate to diabetic animals have been shown to stabilize the glucose homeostasis and restore altered metabolic pathways. However, vanadate exerts these effects at relatively high doses with several toxic effects. Low doses of vanadate are relatively safe but unable to elicit any antidiabetic effects. The present study explored the prospect of using low doses of vanadate with Trigonella foenum graecum, seed powder (TSP), another antidiabetic agent, and to evaluate their antidiabetic effect in diabetic rats. Alloxan diabetic rats were treated with insulin, vanadate, TSP and low doses of vanadate with TSP for three weeks. The effect of these antidiabetic compounds was examined on general physiological parameters, Na+/K+ ATPase activity, membrane lipid peroxidation and membrane fluidity in liver, kidney and heart tissues. Expression of glucose transporter (GLUT4) protein was also examined by immunoblotting method in experimental rat heart after three weeks of diabetes induction. Diabetic rats showed high blood glucose levels. Activity of Na+/K+ ATPase decreased in diabetic liver and heart. However, kidney showed a significant increase in Na+/K+ ATPase activity. Diabetic rats exhibited an increased level of lipid peroxidation and decreased membrane fluidity. GLUT4 distribution was also significantly lowered in heart of alloxan diabetic rats. Treatment of diabetic rats with insulin, TSP, vanadate and a combined therapy of lower dose of vanadate with TSP revived normoglycemia and restored the altered level of Na+/K+ ATPase, lipid peroxidation and membrane fluidity and also induced the redistribution of GLUT4 transporter. TSP treatment alone is partially effective in restoring the above diabetes-induced alterations. Combined therapy of vanadate and TSP was the most effective in normalization of altered membrane linked functions and GLUT4 distribution without any harmful side effect.  相似文献   

2.
Plasma glucose levels are maintained by a precise balance between glucose production and its use. Liver pyruvate kinase (PK) and phosphoenolpyruvate carboxykinase (PEPCK), 2 key enzymes of glycolysis and gluconeogenesis, respectively, play a crucial role in this glucose homeostasis along with skeletal muscle glucose transporter (GLUT4). In the diabetic state, this balance is disturbed owing to the absence of insulin, the principal factor controlling this regulation. In the present study, alloxan-diabetic animals having high glucose levels of more than 300 mmol/L have been taken and the administration of Trigonella seed powder (TSP) to the diabetic animals was assessed for its effect on the expression of PK and PEPCK in liver and GLUT4 distribution in skeletal muscle of alloxan-diabetic rats. TSP treatment to the diabetic animals resulted in a marked decrease in the plasma glucose levels. Trigonella treatment partially restored the altered expression of PK and PEPCK. TSP treatment also corrected the alterations in the distribution of GLUT4 in the skeletal muscle.  相似文献   

3.
Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on antioxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose (P < 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase (P < 0.01,P < 0.001 andP < 0.01), increased levels of GPx and MDA (P < 0.01 andP < 0.001) and decreased membrane fluidity (P < 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose ofTrigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.  相似文献   

4.

Aims

Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance.

Methods

Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day) were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques.

Results

GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9) expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls.

Conclusions

Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance.  相似文献   

5.
Semicarbazide-sensitive amine oxidase (SSAO) is highly expressed in adipose cells, and substrates of SSAO such as benzylamine in combination with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 recruitment in mouse 3T3-L1 adipocytes and in isolated rat adipocytes. Here we examined whether this combination of molecules also stimulates glucose transport in adipocytes from streptozotocin-induced diabetic rats and from Goto-Kakizaki diabetic rats. As previously reported, adipocytes obtained from streptozotocin-induced diabetic rats, showed a reduced stimulation of glucose transport in response to insulin. Under these conditions, the combination of benzylamine and vanadate caused a marked stimulation of glucose transport that was similar to the stimulation detected in control adipocytes. Adipocytes isolated from Goto-Kakizaki diabetic rats also showed a defective response to insulin; however, acute incubation in the presence of benzylamine and vanadate stimulated glucose transport in these cells to the same extent than in adipocytes from non-diabetic rats. These data indicate that adipocytes obtained from two different models of animal diabetes do not show resistance to the activation of glucose transport by SSAO activity, which is in contrast to the well reported resistance to insulin action. It seems to suggest that SSAO activity in combination with vanadate triggers a glucose transport-activating intracellular pathway that remains intact in the diabetic state. Further, our data support the view that the combination of benzylamine and vanadate could be an effective therapy in diabetes.  相似文献   

6.
Levels of glucose 1,6-P2 but not fructose 2,6-P2 were found decreased in skeletal muscle of alloxan-diabetic ketotic rats. Administration of both insulin and vanadate restored the altered values without affecting fructose 2,6-P2 concentrations. In normal rats, insulin increased muscle levels of both sugars, and vanadate decreased glucose 1,6-P2 without changing fructose 2,6-P2 levels. Enzymatic activities involved in glucose 1,6-P2 and fructose 2,6-P2 metabolism were not affected under any experimental condition.  相似文献   

7.
Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1Tyr632, p-AktSer473, β-arrestin-2, c-Src, p-AS160Thr642, and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.  相似文献   

8.
The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.  相似文献   

9.
It has been previously reported that aglycin, a natural bioactive peptide isolated from soybean, is stable in digestive enzymes and has an antidiabetic potential. With a view to explore the pharmacological activity of aglycin in vivo, studies have been conducted to examine its therapeutic effect in diabetic mice, in which it was administered intragastrically as an oral agent. Diabetes was induced in BALB/c mice fed with a high-fat diet and a single intraperitoneal injection of streptozotocin. With onset of diabetes, the mice were administered daily with aglycin (50 mg/kg/d) for 4 weeks. Blood glucose was monitored once a week. Subsequently, skeletal muscle was isolated for assessment in terms of levels of gene and protein IR, IRS1, Akt and glucose transporter 4 (GLUT4). In addition, C2C12 muscle cells as an in vitro diabetic model were used to investigate the effect of aglycin on glucose uptake. Treatment with aglycin was found to be significantly effective in controlling hyperglycemia and improving oral glucose tolerance. Furthermore, aglycin enhanced glucose uptake and glucose transporter recruitment to the C2C12 cell surface in 10 min in vitro. Consistent with these effects, aglycin restored insulin signaling transduction by maintaining IR and IRS1 expression at both the mRNA and protein levels, as well as elevating the expression of p-IR, p-IRS1, p-Akt and membrane GLUT4 protein. The results hence demonstrate that oral administration of aglycin can potentially attenuate or prevent hyperglycemia by increasing insulin receptor signaling pathway in the skeletal muscle of streptozotocin/high-fat-diet-induced diabetic mice.  相似文献   

10.
Type 2 diabetes is preceded by the presence of skeletal muscle insulin resistance, and drugs that increase insulin sensitivity in skeletal muscle prevent the disease. S15511 is an original compound with demonstrated effects on insulin sensitivity in animal models of insulin resistance. However, the mechanisms behind the insulin-sensitizing effect of S15511 are unknown. The aim of our study was to explore whether S15511 improves insulin sensitivity in skeletal muscles. Insulin sensitivity was assessed in skeletal muscles from S15511-treated rats by measuring intracellular insulin-signaling activity and insulin-stimulated glucose transport in isolated muscles. In addition, GLUT4 expression and glycogen levels were assessed after treatment. S15511 treatment was associated with an increase in insulin-stimulated glucose transport in type IIb fibers, while type I fibers were unaffected. The enhanced glucose transport was mirrored by a fiber type-specific increase in GLUT4 expression, while no improvement in insulin-signaling activity was observed. S15511 is a novel insulin sensitizer that is capable of improving glucose homeostasis in nondiabetic rats. The compound enhances skeletal muscle insulin sensitivity and specifically targets type IIb muscle fibers by increasing GLUT4 expression. Together these data show S15511 to be a potentially promising new drug in the treatment and prevention of type 2 diabetes.  相似文献   

11.
The present study was undertaken to investigate short-term (21 days) effects of oral administration of Azadirachta indica leaf extract and vanadate, separately and in combination, on the activities of antioxidant enzymes in streptozotocin-induced diabetic rats. Vanadate is a remarkable antidiabetic agent and shows insulin mimetic effect. However, severe toxicity is associated with vanadate when used in high concentration while at lower concentration the hypoglycemic property of vanadate is reduced. So, we used a low dose of vanadate in combination with A. indica leaf extract and evaluated their effect on the antioxidant defense system. Streptozotocin-diabetic rats were treated separately with insulin, vanadate (0.6 mg/ml), A. indica, and with combined dose of vanadate (0.2 mg/ml) and A. indica. At the end of the experiment, rats were sacrificed and serum glucose levels and activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were determined in cytosolic fraction of liver and kidney. Diabetic rats showed hyperglycemic condition and alteration in antioxidant enzyme activities. Treatment with antidiabetic compounds resulted in the reduction of glucose levels and restoration of enzyme activities to normal. Results showed that combined treatment of vanadate and A. indica leaf extract was the most effective in normalizing altered antioxidant enzyme system.  相似文献   

12.
13.
Vanadium compounds are potent in controlling elevated blood glucose levels in experimentally induced diabetes. However the toxicity associated with vanadium limits its role as therapeutic agent for diabetic treatment. A vanadium compound sodium orthovanadate (SOV) was given to alloxan-induced diabetic Wistar rats in lower doses in combination withTrigonella foenum graecum, a well-known hypoglycemic agent used in traditional Indian medicines. The effect of this combination was studied on lens morphology and glucose metabolism in diabetic rats. Lens, an insulin-independent tissue, was found severely affected in diabetes showing visual signs of cataract. Alterations in the activities of glucose metabolizing enzymes (hexokinase, aldose reductase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase) and antioxidant enzymes (glutathione peroxidase, glutathione reductase) besides the levels of related metabolites, [sorbitol, fructose, glucose, thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH)]were observed in the lenses from diabetic rats and diabetic rats treated with insulin (2 IU/day), SOV (0.6 mg/ml),T. f. graecum seed powder (TSP, 5%) and TSP (5%) in combination with lowered dose of vanadium SOV (0.2 mg/ml), for a period of 3 weeks. The activity of the enzymes, hexokinase, aldose reductase and sorbitol dehydrogenase was significantly increased whereas the activity of glucose-6-phosphate dehydrogenase, glutathione peroxidase and glutathione reductase decreased significantly in lenses from 3 week diabetic rats. Significant increase in accumulation of metabolites, sorbitol, fructose, glucose was found in diabetic lenses. TBARS measure of peroxidation increased whereas the levels of antioxidant GSH decreased significantly in diabetic condition. Insulin restored the levels of altered enzyme activities and metabolites almost to control levels. Sodium orthovanadate (0.6 mg/ml) andTrigonella administered separately to diabetic animals could partially reverse the diabetic changes, metabolic and morphological, while vanadate in lowered dose in combination withTrigonella was found to be the most effective in restoring the altered lens metabolism and morphological appearance in diabetes. It may be concluded that vanadate at lowered doses administered in combination withTrigonella was the most effective in controlling the altered glucose metabolism and antioxidant status in diabetic lenses, these being significant factors involved in the development of diabetic complications, that reflects in the reduced lens opacity  相似文献   

14.
Oxidative stress in diabetic tissues is accompanied by high-level of free radicals with simultaneously declined antioxidant enzymes status leading to cell membrane damage. The present study was carried out to observe the effect of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP) administration on blood glucose and insulin levels, antioxidant enzymes, lipid peroxidation, pyruvate kinase, lactate dehydrogenase and protein kinase C in heart, muscle and brain of the alloxan-induced diabetic rats to see whether the treatment with SOV and TSP was capable of reversing the diabetic effects. Diabetes was induced by administration of alloxan monohydrate (15?mg/100?g body weight), and rats were treated with 2?IU insulin, 0.6?mg/ml SOV, 5% TSP in the diet and a combination of 0.2?mg/ml SOV and 5% TSP separately for 21?days. Blood glucose levels increased markedly in diabetic rats, animals treated with a combined dose of SOV and TSP had glucose levels almost comparable with controls, similar results were obtained in the activities of pyruvate kinase, lactate dehydrogenase, antioxidant enzymes and protein kinase C in diabetic animals. Our results showed that lower doses of SOV (0.2?mg/ml) could be used in combination with TSP to effectively reverse diabetic alterations in experimental diabetes. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Depletion of GLUT4, the primary glucose transporter protein in adipose tissue and skeletal muscle, is reported to contribute to insulin resistance in pregnancy or diabetes. To examine this phenomenon, the expression of GLUT4 protein was assessed by Western blotting in streptozotocin-induced diabetic pregnant rats. In adipose tissue, relative to control, it was decreased by 30% in the normal pregnant group (p<0.001), by 37% in the diabetic nonpregnant group (p<0.01) and by 65% in the diabetic pregnant group (p<0.001). On the other hand, no significant variation was evident among the groups in skeletal muscle. To assess the mechanisms responsible for depletion of GLUT4 protein in adipose tissue, we quantitated levels of GLUT4 mRNA with a RNase protection assay. It was decreased by 44% in the normal pregnant group (p<0.05) and by 55% in the diabetic pregnant group (p<0.05), but not altered in the diabetic nonpregnant group. These results suggest that the depletion of GLUT4 protein in adipose tissue is a factor contributing to insulin resistance in pregnancy or diabetes, especially when the two states exist in combination.  相似文献   

16.
Chi TC  Chen WP  Chi TL  Kuo TF  Lee SS  Cheng JT  Su MJ 《Life sciences》2007,80(18):1713-1720
Resveratrol, a polyphenolic substance found in grape skin, is proposed to account in part for the protective effect of red wine in the cardiovascular system. The aim of the present study is to investigate the action and possible mechanisms of resveratrol-produced regulation of plasma glucose in normal and diabetic rats including the animal model of streptozotocin (STZ)-induced and nicotinamide-STZ-induced (NA-STZ), and insulin-resistant diabetic rats. Resveratrol (p.o.) produced a hypoglycemic effect in a dose-dependent manner in normal and diabetic rats, and the insulin level was increased following resveratrol treatment in normal and NA-STZ diabetic rats. In insulin-deficient STZ-diabetic rats, resveratrol significantly lowered the plasma glucose 90 min after oral treatment, and the hypoglycemic effect was abolished by phosphatidyl-3-kinase (PI3K) inhibitors (LY294002 and wortmannin) which also inhibited resveratrol-induced Akt phosphorylation in soleus muscle of STZ-diabetic rats. The change in the protein expression level of glucose transporter subtype 4 (GLUT4) in the soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats treated with resveratrol (3 mg/kg, p.o.) for 7 days was examined. Resveratrol normalized hepatic PEPCK expression and increased GLUT4 expression in the soleus muscle of STZ-diabetic rats. The results indicate that the mechanisms contributing to the hypoglycemic effect of resveratrol include insulin-dependent and insulin-independent pathway, and PI3K-Akt-signaling was involved in the latter mechanism to enhance glucose uptake in skeletal muscle.  相似文献   

17.
The in vivo effects of insulin, and other insulino mimetic agents like vanadate and fenugreek (T. foenum graecum) were followed on the changes in the activities of creatine kinase in heart, skeletal muscle and liver of experimental diabetic rats. As compared to control rats, creatine kinase activities were found to decrease significantly in the tissues during experimental diabetes. All the antidiabetic compounds used namely, insulin, vanadate and Fenugreek seed powder normalised the decreased activities to almost control values. The effects of insulin and vanadate were comparable in restoring normoglycemia and the creatine kinase activities.  相似文献   

18.
During the life span, phenotypic and structural modifications on skeletal muscle contribute to a reduction on glucose uptake either in basal state or triggered by insulin, but the underlying mechanisms for this decline are not entirely identified. A reduction in the expression of skeletal muscle glucose transporters (GLUTs), glucose transporter type 1 (GLUT1) and glucose transporter type 4 (GLUT4), has been associated to such phenomena, but unlike the case of insulin, only few studies have addressed the effect of age on muscle-contraction-induced glucose uptake. The aim of the study was to investigate the influence of age on GLUT1 and GLUT4 expression in skeletal muscle and its relation to the glucose uptake induced by muscle contraction. For this purpose, soleus muscle from Wistar rats aged 4, 10, 22 and 42 weeks were isolated and electrically stimulated (30 min, 10 Hz, 20 V, 0.2 ms). After stimulation, glucose uptake and GLUT1 and GLUT4 expression and localisation were evaluated. Muscle contraction caused an increase in glucose uptake in all studied groups. In addition, the absolute rates of glucose uptake were negatively correlated with age. The expression of GLUT4 was lower in older animals, whereas no relation between age and GLUT1 expression was found. Immunohistochemistry confirmed the ontogenic effect on GLUT4 expression and suggested an age-related modification on GLUT1 distribution within the muscle fibres; for instance, this protein seems to be present mainly out of the sarcoplasm. The present findings demonstrate that the ability of muscle contraction to increase glucose uptake is not influenced by age, whereas glucose uptake under basal conditions decreases with age.  相似文献   

19.
Semicarbazide-sensitive amine oxidase (SSAO) is very abundant at the plasma membrane in adipocytes. The combination of SSAO substrates and low concentrations of vanadate markedly stimulates glucose transport and GLUT4 glucose transporter recruitment to the cell surface in rat adipocytes by a mechanism that requires SSAO activity and hydrogen peroxide formation. Substrates of SSAO such as benzylamine or tyramine in combination with vanadate potently stimulate tyrosine phosphorylation of both insulin-receptor substrates 1 (IRS-1) and 3 (IRS-3) and phosphatidylinositol 3-kinase (PI 3-kinase) activity in adipose cells, which occurs in the presence of a weak stimulation of insulin-receptor kinase. Moreover, the acute administration of benzylamine and vanadate in vivo enhances glucose tolerance in non-diabetic and streptozotocin-induced diabetic rats and reduces hyperglycemia after chronic treatment in streptozotocin-diabetic rats. Based on these observations, we propose that SSAO activity and vanadate potently mimic insulin effects in adipose cells and exert an anti-diabetic action in an animal model of type 1 diabetes mellitus.  相似文献   

20.
Wu Y  Ouyang JP  Zhou YF  Wu K  Zhao DH  Wen CY 《生理学报》2004,56(4):539-549
本文研究血管紧张素Ⅱ受体拮抗剂诺沙坦对非胰岛素依赖型糖尿病(non-insulin-dependent diabetes mellitus,NIDDM)大鼠胰岛素敏感性的改善作用,并探讨其作用机制。从饮水中给予正常或高脂喂养加小剂量链脲佐菌素(STZ)诱发的NIDDM大鼠诺沙坦(4 mg/kg),连续6周。分离骨骼肌,用免疫印迹法检测诺沙坦对胰岛素受体底物1(insulin receptor substrate 1,IRS-1)、蛋白激酶B(protein kinase B,PKB)和葡萄糖转运因子4(glucose transporter 4,GLUT4)的表达,以及IRS-1的磷酸化、IRS-1与磷脂酰肌醇3激酶(phosphatidylinositol(PI)3-kinase)的结合。口服葡萄糖耐量试验表明,口服诺沙坦可改善糖尿病大鼠胰岛素敏感性。在骨骼肌组织,NIDDM和正常大鼠的IRS-1、PKB和GLUT4蛋白表达无差异,且不受诺沙坦处理的影响。NIDDM大鼠胰岛素刺激后的骨骼肌IRS-1酪氨酸磷酸化水平、PI 3-kinase结合IRS-1的活性和PKB活性较对照组显著降低(P<0.01),且不能被诺沙坦改善。诺沙坦显著增加NIDDM大鼠肌细胞质膜(plasma membrane,PM)和T管(T-tubules,TT)胰岛素诱导的GLUT4的 含量(P<0.05)。与该结果一致的是,诺沙坦处理的NIDDM大鼠血糖水平较未处理NIDDM大鼠下降(P<0.05)。结果表明,诺沙坦可改善胰岛素抵抗状态,主要是通过非PI 3-kinase依赖的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号