首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired glucose tolerance (IGT) and non-insulin-dependent diabetes mellitus (NIDDM) are associated with an impaired ability of the beta-cell to sense and respond to small changes in plasma glucose. The aim of this study was to establish whether acute hyperglycemia per se plays a role in inducing this defect in beta-cell response. Seven healthy volunteers with no family history of NIDDM were studied on two occasions during a 12-h oscillatory glucose infusion with a periodicity of 144 min. Once, low-dose glucose was infused at a mean rate of 6 mg x kg(-1) x min(-1) and amplitude 33% above and below the mean rate, and, once, high-dose glucose was infused at 12 mg x kg(-1) x min(-1) and amplitude 16% above and below the mean rate. Mean glucose levels were significantly higher during the high-dose compared with the low-dose glucose infusion [9.5 +/- 0.8 vs. 6.8 +/- 0.2 mM (P < 0.01)], resulting in increased mean insulin secretion rates [ISRs; 469.1 +/- 43.8 vs. 268.4 +/- 29 pmol/min (P < 0.001)] and mean insulin levels [213.6 +/- 46 vs. 67.9 +/- 10.9 pmol/l (P < 0.008)]. Spectral analysis evaluates the regularity of oscillations in glucose, insulin secretion, and insulin at a predetermined frequency. Spectral power for glucose, ISR, and insulin was reduced during the high-dose glucose infusion [11.8 +/- 1.4 to 7.0 +/- 1.6 (P < 0.02), 7.6 +/- 1.5 to 3.2 +/- 0.5 (P < 0.04), and 10.5 +/- 1.6 to 4.6 +/- 0.7 (P < 0.01), respectively]. In conclusion, short-term infusion of high-dose glucose to obtain glucose levels similar to those previously seen in IGT subjects results in reduced spectral power for glucose, ISR, and insulin. The reduction in spectral power previously observed for ISR in IGT or NIDDM subjects may be due partly to hyperglycemia.  相似文献   

2.
Endothelial dysfunction is a hallmark of Type 2 diabetes related to hyperglycemia and oxidative stress. Nitric oxide-dependent vasodilator actions of insulin may augment glucose disposal. Thus endothelial dysfunction may worsen insulin resistance. Intra-arterial administration of vitamin C improves endothelial dysfunction in diabetes. In the present study, we investigated effects of high-dose oral vitamin C to alter endothelial dysfunction and insulin resistance in Type 2 diabetes. Plasma vitamin C levels in 109 diabetic subjects were lower than healthy (36 +/- 2 microM) levels. Thirty-two diabetic subjects with low plasma vitamin C (<40 microM) were subsequently enrolled in a randomized, double-blind, placebo-controlled study of vitamin C (800 mg/day for 4 wk). Insulin sensitivity (determined by glucose clamp) and forearm blood flow in response to ACh, sodium nitroprusside (SNP), or insulin (determined by plethysmography) were assessed before and after 4 wk of treatment. In the placebo group (n = 17 subjects), plasma vitamin C (22 +/- 3 microM), fasting glucose (159 +/- 12 mg/dl), insulin (19 +/- 7 microU/ml), and SI(Clamp) [2.06 +/- 0.29 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)] did not change significantly after placebo treatment. In the vitamin C group (n = 15 subjects), basal plasma vitamin C (23 +/- 2 microM) increased to 48 +/- 6 microM (P < 0.01) after treatment, but this was significantly less than that expected for healthy subjects (>80 microM). No significant changes in fasting glucose (156 +/- 11 mg/dl), insulin (14 +/- 2 microU/ml), SI(Clamp) [2.71 +/- 0.46 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)], or forearm blood flow in response to ACh, SNP, or insulin were observed after vitamin C treatment. We conclude that high-dose oral vitamin C therapy, resulting in incomplete replenishment of vitamin C levels, is ineffective at improving endothelial dysfunction and insulin resistance in Type 2 diabetes.  相似文献   

3.
J Rouru  R Huupponen  U Pesonen  M Koulu 《Life sciences》1992,50(23):1813-1820
The effect of subchronic metformin treatment on food intake, weight gain and plasma and tissue hormone levels was investigated in genetically obese male Zucker rats and in their lean controls. Metformin hydrochloride (320 mg/kg/day for 14 days in the drinking water) significantly reduced 24 hour food intake both after one and two weeks treatment in obese rats. In contrast, metformin had only a transient effect on food intake in lean animals. The reduced food intake was associated with body weight decrease, particularly in obese rats. Metformin markedly reduced also the hyperinsulinemia of the obese animals without altering their plasma glucose or pancreatic insulin content which may reflect an improved insulin sensitivity after metformin treatment. Metformin did not change plasma corticosterone levels or insulin and somatostatin concentrations in the pancreas. Metformin reduced pyloric region somatostatin content in lean rats. It is concluded that metformin has an anorectic effect and reduces body weight and hyperinsulinemia in genetically obese Zucker rat.  相似文献   

4.
Serum C-peptide responses to glucagon and daily urine C-peptide excretion in successive periods of different treatment in two groups of patients with non-insulin-dependent diabetes mellitus (NIDDM) (mean interval between two tests less than 1 month) were compared. In group A patients (n = 8), the glycemic control was improved after transferring the treatment from sulfonylurea (SU) to insulin (fasting plasma glucose: SU: 192 +/- 47, insulin: 127 +/- 21 mg/dl, mean +/- S.D., p less than 0.01). Fasting serum C-peptide immunoreactivity (CPR) was significantly lower at the period of insulin treatment (SU: 1.93 +/- 1.01, insulin: 1.47 +/- 0.79 ng/ml, p less than 0.05), but there was no difference in the increase in serum CPR (maximal--fasting) (delta serum CPR) during glucagon stimulation in the two periods of treatment (SU: 1.70 +/- 0.72, insulin: 1.47 +/- 0.98 ng/ml). In group B patients (n = 7), there was no significant difference in glycemic control after transferring the treatment from insulin to SU (fasting plasma glucose: insulin: 127 +/- 24, SU: 103 +/- 13 mg/dl). Fasting serum CPR was significantly lower during the period of insulin treatment (insulin: 1.39 +/- 0.64, SU: 2.21 +/- 0.86 ng/ml, p less than 0.025), but delta serum CPR during glucagon stimulation still showed no significant difference between the two periods (insulin: 1.97 +/- 1.16, SU: 2.33 +/- 1.57 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
BACKGROUND: The tumor necrosis factor alpha (TNF-alpha) might play a central role in insulin resistance, a frequent correlate of obesity likely contributing to some obesity-associated complications. Adult growth hormone (GH) deficiency syndrome (GHDA) shares with obesity excessive fat mass, hyperlipidemia, increased cardiovascular risk, and insulin resistance. On the other hand, GH has been shown to induce transient deterioration of glucose metabolism and insulin resistance when administered in normal humans and in GHDA patients. No information is presently available on the relationship between serum TNF-alpha levels and insulin sensitivity in GHDA. METHODS: We compared the serum TNF-alpha levels found in 10 GHDA patients before and after a 6-month recombinant human GH therapy (Genotropin), in an insulin resistance prone population of 16 obese (OB) patients and in 38 normal-weight healthy blood donors (controls). The insulin sensitivity was assessed by a euglycemic-hyperinsulinemic glucose clamp in all the GHDA patients and in 10 OB and in 6 control subjects. RESULTS: The serum TNF-alpha levels were not significantly different in OB patients (42.2 +/- 12.81 pg/ml), in GHDA patients at baseline (71.3 +/- 23.97 pg/ml), and in controls (55.3 +/- 14.28 pg/ml). A slight decrease of TNF-alpha values was noted in GHDA patients after 6 months of recombinant human GH treatment (44.5 +/- 20.19 pg/ml; NS vs. baseline). The insulin sensitivity (M) was significantly reduced in OB patients (2.4 +/- 0.30 mg/kg/min) as compared with control subjects (7.5 +/- 0.39 mg/kg/min) and in GHDA patients both at baseline (6.6 +/- 0.6 mg/kg/min) and after recombinant human GH therapy (5.6 +/- 0.7 mg/kg/min). The insulin sensitivity in the GHDA patients, similar to that of controls at baseline, worsened after recombinant human GH treatment (p < 0.05 vs. baseline; p = 0.05 vs. controls). Linear regression analysis showed no correlation between TNF-alpha and M values (see text) in all patient groups. CONCLUSIONS: These data indicate that circulating concentrations of TNF-alpha do not reflect the degree of insulin resistance in obesity and GHDA. They, however, do not exclude that TNF-alpha may induce insulin resistance at tissue level.  相似文献   

6.
消炎痛对四氧嘧啶引起的大鼠糖尿病的保护作用   总被引:2,自引:0,他引:2  
许方燮  于吉人 《生理学报》1992,44(2):202-208
本工作观察了预先给予消炎痛对四氧嘧啶引起的糖尿病大鼠血糖、血清胰岛素和胰高血糖素浓度的影响。结果表明:预先皮下注射消炎痛能使糖尿病大鼠血糖浓度明显降低,并且具有明显的量效关系。在消炎痛剂量5,10,15mg/kg时,注射四氧嘧啶48h后血糖浓度由对照组的591.5±38.2mg%分别降低到559.1±53.2,463.2±16.6和266.6±29.9mg%。在注射消炎痛10mg/kg的实验组,血清胰岛素浓度由对照组的10.5±2.7μU/ml增加到31.9±7.0μU/ml,胰高血糖素由对照组的550.0±27.0pg/ml降低到303.1±22.9pg/ml。组织学观察结果表明,消炎痛对四氧嘧啶引起的大鼠胰岛β细胞的损伤具有显著的保护作用。  相似文献   

7.
In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.  相似文献   

8.
Dyslipidemia is common in patients with HIV infection. In this study, a two-stage euglycemic hyperinsulinemic clamp, with infusion of stable isotopically labeled tracers, was used to evaluate insulin action in skeletal muscle, liver, and adipose tissue in HIV-infected men with dyslipidemia (HIV-DL; plasma triglyceride >250 mg/dl and HDL <45 mg/dl; n=12), HIV-infected men without dyslipidemia (HIV w/o DL; n=12), and healthy men (n=6). Basal rates of glucose production (glucose R(a)), glucose disposal (glucose R(d)), and lipolysis (palmitate R(a)) were similar between groups. The relative suppression of glucose R(a) (63+/- 4, 77+/- 2, and 78+/- 3%, P=0.008) and palmitate R(a) (49+/-4, 63+/-3, and 68+/-3%, P=0.005) during ow-dose insulin infusion (plasma insulin approximately 30 microU/ml), and the relative stimulation of glucose R(d) (214+/-21, 390+/-25, and 393+/-46%, P=0.001) during high-dose insulin infusion (plasma insulin approximately 75 microU/ml) were lower in HIV-DL than in HIV w/o DL and healthy volunteers, respectively. Suppression of basal glucose R(a) correlated with plasma adiponectin (r=0.44, P=0.02) and inversely with plasma IL-6 (r=-0.49, P<0.001). Stimulation of glucose R(d) correlated directly with adiponectin (r=0.48, P<0.01) and inversely with IL-6 (r=-0.49, P=0.02). We conclude that dyslipidemia in HIV-infected men is indicative of multiorgan insulin resistance, and circulating adipokines may be important in the pathogenesis of impaired insulin action.  相似文献   

9.
The objective was to explore the effects of metformin on the expression of endometrial glucose transporter 4 (GLUT4) and analyze the related factors of GLUT4 in patients with polycystic ovary syndrome (PCOS). This study included 20 obese patients with PCOS (PCOS group) and 20 obese patients who had infertility caused by oviducal or pelvic factors but had no PCOS (control group). Follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol-2 (E(2)), testosterone (T), fasting serum glucose (FSG), fasting insulin serum (FINS), homeostasis model assessment-insulin resistance (HOMA-IR), and endometrial GLUT4 expression were determined in the two groups. In PCOS group, patients were given 500 mg of metformin three times per day for 3 mo, and then the parameters above were determined again and compared with that before metformin treatment. The parameters above also were compared between PCOS and control groups. The correlation of GLUT4 with its related factors was analyzed. The levels of T, FINS, and HOMA-IR were higher in PCOS group than in the control group (P < 0.01). The levels of protein and mRNA of endometrial GLUT4 were lower in the PCOS group than in the control group (P < 0.001). The expression of protein and mRNA of endometrial GLUT4 increased after metformin treatment (P < 0.001). HOMA-IR was negatively correlated with GLUT4 expression (P = 0.027). In patients with PCOS, the levels of protein and mRNA of endometrial GLUT4 were lower compared with that in non-PCOS women, and HOMA-IR was strongly associated with endometrial GLUT4 expression. Metformin may up-regulate endometrial GLUT4 expression to improve endometrial IR.  相似文献   

10.
OBJECTIVES: Tumor necrosis factor-alpha (TNF-alpha) is associated with insulin resistance in certain conditions. However, whether TNF-alpha is related to insulin resistance in hypertensive subjects is still controversial. The aim of this study was to determine the status of TNF-alpha and insulin resistance in hypertension. METHODS: Newly diagnosed nondiabetic 17 essentially hypertensive (6 men, 11 women) patients, and 11 control healthy subjects (5 men, 6 women) are involved in the study. Body mass index (BMI), insulin, fasting blood glucose, cholesterol, triglyceride, and TNF-alpha levels were measured. Insulin resistance is assessed according to homeostasis model of assessment (HOMA-IR). RESULTS: Serum insulin (8.4 +/- 2.7 vs. 6.1 +/- 1.4 mIU/ml; p < 0.01), triglyceride (245.0 +/- 39.9 vs. 193.0 +/- 22.8 mg/dl; p < 0.01), and TNF-alpha (4.2 +/- 0.7 vs. 3.0 +/- 0.6 pg/ml; p < 0.001) levels, and HOMA-IR (2.0 +/- 0.8 vs. 1.3 +/- 0.3; p < 0.001) were significantly higher in the hypertensive patients compared to the normotensive control group. There were positive correlations between TNF-alpha levels and body mass index (r = 0.64, p < 0.01), and triglyceride (r = 0.55 p = 0.02) levels in the whole study group. However, there was no correlation of either TNF-alpha or HOMA-IR. CONCLUSIONS: Our data revealed that hypertensive patients have insulin resistance and higher TNF-alpha levels, but there is no relation between TNF-alpha levels and insulin resistance.  相似文献   

11.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

12.
We assessed the possibility of C57BL/6-Tg (Meg1/Grb10)isn(Meg1 Tg) mice as a non-obese type 2 diabetes (2DM) animal model. Meg1 Tg mice were born normal, but their weight did not increase as much as normal after weaning and showed about 85% of normal size at 20 weeks of age. Body mass index of Meg1 Tg mice was also smaller than that of control mice. The glucose tolerance test and insulin tolerance test showed that Meg1 Tg mice had reduced ability to normalize the blood glucose level. Blood urea nitrogen (BUN) in Meg1 Tg mice (19.6 +/- 1.2 mg/dl) was significantly lower than in controls (22.0 +/- 0.8 mg/dl), while plasma triglyceride, insulin, adiponectin, and resistin levels were significantly higher (202.0 +/- 23.4 mg/dl vs 146.3 +/- 23.4 mg/dl, 152.4 +/- 16.3 pg/ml vs 88.1 +/- 16.9 pg/ml, 74.4 +/- 10.9 microg/ml vs 48.3 +/- 7.0 microg/ml, and 4.0 +/- 0.2 ng/ml vs 3.6 +/- 0.2 ng/ml, respectively). Body, visceral fat weight and liver weights were significantly lower (19.6 +/- 0.4 g vs 24.3 +/- 0.3 g, 376.7 +/- 29.6 mg to 507.5 +/- 23.0 mg, and 906.0 +/- 41.8 mg to 1,001.0 +/- 15.1 mg, respectively). Thus, hyperinsulinemia observed in Meg1 Tg mice indicates that their insulin signaling pathway is somehow inhibited. With high fat diet, the diabetes onset rate of Meg1 Tg mice increased up to 60%. These results suggest that Meg1 Tg mice resemble human 2DM.  相似文献   

13.
The use of atypical antipsychotics in the clinical management of schizophrenia and schizoaffective disorders has been associated with the development of insulin resistance. The present study evaluates the possible individual ameliorating effect of single daily oral treatments with 20 mg/kg/day of metformin and 0.1 mg/kg of glibenclamide in two groups of Wistar rats pretreated with 0.2 mg/kg of risperidone for 60 days. Two additional groups of rats were only treated with 0.2 mg/kg of risperidone and 10 mL/kg of distilled water, respectively, also for 60 days. Results showed that oral pre-treatment with metformin significantly attenuated increases in the weight gain pattern, fasting glucose, fasting plasma insulin, serum triglyceride and total cholesterol levels that were elevated by risperidone treatment. Metformin also significantly reduced glycosylated hemoglobin concentration, fasting insulin-glucose ratio and fasting insulin resistance index. Conversely, oral pre-treatment with glibenclamide for 60 days did not significantly reduce any of the measured parameters except for glycosylated hemoglobin concentrations. Thus, results of this study showed that 20 mg/kg of metformin effectively ameliorated the development of risperidone-induced insulin resistance and dyslipidemia which was mediated via improvement in insulin resistance. This study provides insight into the therapeutic potential of metformin in preventing risperidone-induced insulin resistance diabetes mellitus and dyslipidaemia.  相似文献   

14.
We wished to determine the effect of a 25% hematocrit reduction on glucoregulatory hormone release and glucose fluxes during exercise. In five anemic dogs, plasma glucose fell by 21 mg/dl and in five controls by 7 mg/dl by the end of the 90-min exercise period. After 50 min of exercise, hepatic glucose production (Ra) and glucose metabolic clearance rate (MCR) began to rise disproportionately in anemics compared with controls. By the end of exercise, the increase in Ra was almost threefold higher (delta 15.1 +/- 3.4 vs. delta 5.2 +/- 1.3 mg X kg-1 X min-1) and MCR nearly fourfold (delta 24.6 +/- 8.8 vs. delta 6.5 +/- 1.3 ml X kg-1 X min-1). Exercise with anemia, in relation to controls resulted in elevated levels of glucagon [immunoreactive glucagon (IRG) delta 1,283 +/- 507 vs delta 514 +/- 99 pg/ml], norepinephrine (delta 1,592 +/- 280 vs. delta 590 +/- 155 pg/ml), epinephrine (delta 2,293 +/- 994 vs. delta 385 +/- 186 pg/ml), cortisol (delta 6.7 +/- 2.2 vs. delta 2.1 +/- 1.0 micrograms/dl) and lactate (delta 12.1 +/- 2.2 vs. delta 4.2 +/- 1.8 mg/dl) after 90 min. Immunoreactive insulin and free fatty acids were similar in both groups. In conclusion, exercise with a 25% hematocrit reduction results in 1) elevated lactate, norepinephrine, epinephrine, cortisol, and IRG levels, 2) an increased Ra which is likely related to the increased counterregulatory response, and 3) we speculate that a near fourfold increase in MCR is related to metabolic changes due to hypoxia in working muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The present investigation was undertaken to determine the content of ACTH, glucose and lactate in plasma of 4 pigs (body weight 82--118 kg) during a circadian period and during an insulin hypoglycemia test using 1 IU/kg in 3 pigs (body weight 96--118 kg) and 4 pigs (body weight 20--30 kg). The plasma ACTH level at rest was 57 +/- 27 pg/ml (Mean +/- SE) for all samples in all animals during a circadian period. Significant diurnal changes were not observed. During insulin-induced hypoglycaemia plasma ACTH rose from a mean (+/- SE) basal level of 35 +/- 15 to a maximum of 673 +/- 100 pg/ml at 60 min in heavier pigs and in lighter pigs to 395 +/- 153 at 30 min and 403 +/- 145 pg/ml at 120 min. Initial ACTH responses were evident 30 min (heavier pigs) and between 0 and 15 min (lighter pigs) after insulin administration. Plasma glucose decreased from a mean (+/- SE) basal level of 80 +/- 10 to a minimum of 6 +/- 1 mg/100 ml at 60 min (heavier pigs) and from 88 +/- 3 to 16 +/- 4 mg/100 ml at 60 min (lighter pigs). After its minimum level the glucose concentration showed a slower increment in the heavier pigs as compared to lighter animals. Plasma lactate rose from a mean (+/- SE) basal level of 19 +/- 10 to a maximum of 76 +/- 42 mg/100 ml at 120 min (heavier pigs) and from 12 +/- 3 to 37 +/- 16 mg/100 ml at 150 min (lighter group). In accordance with the changes in the blood plasma levels of ACTH, glucose and lactate, the clinical symptoms of hypoglycaemia in heavier pigs were more intensive.  相似文献   

16.
Changes in canine plasma glucose, immunoreactive glucagon (IRG), pancreatic polypeptide (PP) and insulin (IRI) were studied during the acute development of diabetes mellitus after iv alloxan injection. 100 mg or 75 mg/kg body weight of alloxan was injected iv and blood was taken successively till one or two days later. Plasma glucose showed four phases: first immediate and moderate decrease appeared 30 min after injection, second initial hyperglycemic phase, third hypoglycemic and fourth diabetic ones. Plasma IRI had already increased to 182 +/- 60 microU/ml 10 min after injection and again began to increase after about 6 h, peaking to 134 +/- 49 microU/ml at 18 h. Plasma IRG began increasing gradually soon after alloxan injection. The initial value was 196 +/- 26 pg/ml and it increased to 534 +/- 144 pg/ml at 4 h during the initial hyperglycemic phase, then reached a higher level through the hypoglycemic and diabetic phases. The change in plasma PP was similar to that in IRG. The initial value was 256 +/- 95 pg/ml at 12 h after injection, peaking to 840 +/- 100 pg/ml in the hypoglycemic phase. Similar blunted values were obtained following 75 mg/kg alloxan injection. Thus not only plasma IRI but also plasma IRG and PP varied greatly during the acute development of alloxan diabetes and some contribution of IRG to the initial hyperglycemic phase was suggested.  相似文献   

17.
The therapeutic action of 3.5 mg glibenclamide (HB 420) once a day for six weeks was evaluated in ten mild NID diabetics previously treated with diet only. Stable HbA1, insulin secretion during hyperglycaemic clamp (100 mg/dl over the baseline in the first study, and at the same level in the second one), peripheral sensitivity expressed as the amount of dextrose infused per Kg per min (M-coefficient), the glucose metabolic clearance rate (MCR) and the M/I ratio were measured. Circulating monocytes were separated to assess insulin binding before and after treatment. The results included a significant decrease in HbA1 (7.5 +/- 0.3 against 8.4 +/- 0.4%, P less than 0.005), increased steady-state (100-120 min.) plasma insulin (31 +/- 4.4 against 25.7 +/- 3.9 microU/ml), a significant increase in M-coefficient (4.02 +/- 0.62 against 2.49 +/- 0.31 mg/Kg/min, P less than 0.01), and MCR (1.90 +/- 0.34 against 1.18 +/- 0.18 ml/Kg/min, P less than 0.025) and an increase in the M/I ratio (14.6 +/- 1.9 against 11.2 +/- 1.7). All subjects displayed an increase in total insulin binding (4.03 +/- 0.31% against 2.79 +/- 0.34%, P less than 0.001) and affinity constants (Ke = 8.3 +/- 0.6 against 6.6 +/- 0.4 X 10(7) M-1, P less than 0.05). Since the M/I ratio increased in only 7/10 subjects and since there was no significant correlations between the percentage increase in M and MCR and the plasma insulin increase, whereas the increase in R0 was significant, it is felt that the euglycaemizing action of low doses of glibenclamide is primarily peripheral.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Whether leptin, a product of the ob gene, can be stimulated by glucocorticoid administration has been an issue of controversy. We investigated the effect of intravenous administration of methylprednisolone (500 mg/day x 3 days) on plasma levels of leptin in 16 patients (female/male = 11/5) with Graves' hyperthyroidism and active ophthalmopathy who received pulse therapy. Significant elevation of plasma leptin levels started at the eighth hour (13.9+/-1.8 ng/mL, p=0.042) and lasted until the 72nd hour (21.2+/-5.0 ng/mL, p=0.009), as compared with basal levels (8.8+/-1.2 ng/mL). When methylprednisolone was replaced with oral prednisolone (10 mg three times per day x 2 weeks), no difference in plasma leptin levels was noted compared with basal measurement. Under methylprednisolone administration, a significant suppression of tumor necrosis factor-alpha began at the 24th hour (8.1+/-1.3 pg/mL, p=0.004) and lasted until the 48th hour (8.1+/-1.0 pg/mL, p=0.008), as compared with basal measurement (12.5+/-1.5 pg/mL). Compared with basal levels (93+/-2 mg/dL), significant elevation in the plasma glucose level started at the third hour (135+/-10 mg/dL, p=0.000) and lasted until the 72nd hour (110+/-4 mg/dL, p=0.019). The timing of serum insulin elevation approximated that of plasma glucose (3 hours: 14+/-3 microU/mL, p=0.006) and lasted until the end of prednisolone administration (2 weeks: 12+/-2 microU/mL, p=0.044), when compared with basal levels (14+/-3 microU/mL). We concluded that the parental administration of pharmacological doses of methylprednisolone to patients with Graves' hyperthyroidism could acutely raise their plasma level of leptin.  相似文献   

19.
目的:探讨二甲双胍联合西格列汀对2型糖尿病患者氧化应激、胰岛素抵抗的影响。方法:收集我院就诊或住院治疗的80例2型糖尿病患者,随机分为实验组和对照组,每组40例。两组患者入院后均给予相应的治疗措施,对照组患者给予二甲双胍250 mg/次,2次/d;实验组患者在对照组的基础上给予西格列汀100 mg/次,1次/d,治疗均连续8周。治疗结束后对患者血清丙二醛(MDA)、8异前列腺素F2α(8-iso-PGF2α)、空腹血糖(FBG)、空腹胰岛素(FINS)、胰岛素抵抗指数(HOMA-IR)以及患者临床治疗效果进行检测并比较。结果:与治疗前相比,治疗后两组患者MDA、8-iso-PGF2α、FBG、FINS以及HOMA-IR水平均下降(P0.05);与对照组相比,实验组患者MDA、8-iso-PGF2α、FBG、FINS以及HOMA-IR水平较低(P0.05),临床治疗总有效率较高(P0.05)。结论:二甲双胍联合西格列汀能够降低2型糖尿病患者血糖水平,降低MDA、8-iso-PGF2α水平,减轻氧化应激反应,降低胰岛素抵抗,临床疗效较好。  相似文献   

20.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号