首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stomatogastric ganglion (STG) and the cardiac ganglion (CG) of decapod crustaceans are modulated by neuroactive substances released locally and by circulating hormones released from neuroendocrine structures including the pericardial organs (POs). Using nanoscale liquid chromatography electrospray ionization quadrupole-time-of-flight tandem mass spectrometry and direct tissue matrix-assisted laser desorption/ionization Fourier transform mass spectrometry we have identified and sequenced a novel neuropeptide, GAHKNYLRFamide (previously misassigned as KHKNYLRFamide in a study that did not employ peptide derivatization), from the POs and/or the stomatogastric nervous system (STNS) of the crabs, Cancer borealis, Cancer productus and Cancer magister. In C. borealis, exogenous application of GAHKNYLRFamide increased the burst frequency and number of spikes per burst of the isolated CG and re-initiated bursting activity in non-bursting ganglia, effects also elicited by the FMRFamide-like peptides (FLPs) SDRNFLRFamide and TNRNFLRFamide. In the intact STNS (which contains the STG), exogenous application of GAHKNYLRFamide increased the frequency of the pyloric rhythm and activated the gastric mill rhythm, effects also similar to those elicited by SDRNFLRFamide and TNRNFLRFamide. FLP-like immunoreactivity in the POs and the STNS was abolished by pre-adsorption with the synthetic GAHKNYLRFamide. Different members of the FLP family exhibited differential degradation in the presence of extracellular peptidases. Taken collectively, the amino acid sequence of GAHKNYLRFamide, the blocking of FLP-like immunostaining, and its physiological effects on the CG and STNS suggest that this peptide is a novel member of the FLP superfamily.  相似文献   

2.
In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern.  相似文献   

3.
Fu Q  Tang LS  Marder E  Li L 《Journal of neurochemistry》2007,101(4):1099-1107
The neural networks in the crustacean stomatogastric ganglion are modulated by neuroactive substances released locally into the neuropil of the stomatogastric ganglion and by circulating hormones released by neuroendocrine structures including the pericardial organs. Using nanoscale liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry, we have identified and sequenced a novel B type allatostatin (CbAST-B1), VPNDWAHFRGSWamide, present in the pericardial organs of the crabs, Cancer borealis, and Cancer productus. We describe the physiological actions of CbAST-B1 on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. CbAST-B1 reduces the pyloric network frequency in a dose-dependent manner. The effect of bath-applied CbAST-B1 depends on the preceding physiological state of the preparation. Surprisingly, despite marked amino-acid sequence dissimilarity between the novel CbAST-B1 and the A type allatostatin family of peptides (AST-A), the physiological effects of CbAST-B1 are similar to those of AST-A.  相似文献   

4.
Durophagous crabs successfully hunt hard-shelled prey by subjecting them to extremely strong biting forces using their claws. Here I show that, for a given body mass, six species of Cancer crabs (Cancer antennarius, Cancer branneri, Cancer gracilis, Cancer magister, Cancer oregonensis and Cancer productus) were able to exert mean maximum biting forces greater than the forces exerted in any other activity by most other animals. These strong biting forces were in part a result of the high stresses (740-1350 kN m(-2)) generated by the claw closer muscle. Furthermore, the maximum muscle stress increased with increasing mean resting sarcomere length (10-18 microm) for the closer muscle of the claws of these six Cancer species. A more extensive analysis incorporating published data on muscle stresses in other animal groups revealed that stress scales isometrically with the resting sarcomere length among species, as predicted by the sliding filament model of muscle contraction. Therefore, muscle or filament traits other than a very long mean sarcomere length need not be invoked in explaining the high stresses generated by crustacean claws.  相似文献   

5.
Studies of release under physiological conditions provide more direct data about the identity of neuromodulatory signaling molecules than studies of tissue localization that cannot distinguish between processing precursors and biologically active neuropeptides. We have identified neuropeptides released by electrical stimulation of nerves that contain the axons of the modulatory projection neurons to the stomatogastric ganglion of the crab, Cancer borealis. Preparations were bathed in saline containing a cocktail of peptidase inhibitors to minimize peptide degradation. Both electrical stimulation of projection nerves and depolarization with high K+ saline were used to evoke release. Releasates were desalted and then identified by mass using MALDI-TOF (matrix-assisted laser desorption/ionization-time-of-flight) mass spectrometry. Both previously known and novel peptides were detected. Subsequent to electrical stimulation proctolin, Cancer borealis tachykinin-related peptide (CabTRP), FVNSRYa, carcinustatin-8, allatostatin-3 (AST-3), red pigment concentrating hormone, NRNFLRFa, AST-5, SGFYANRYa, TNRNFLRFa, AST-9, orcomyotropin-related peptide, corazonin, Ala13-orcokinin, and Ser9-Val13-orcokinin were detected. Some of these were also detected after high K+ depolarization. Release was calcium dependent. In summary, we have shown release of the neuropeptides thought to play an important neuromodulatory role in the stomatogastric ganglion, as well as numerous other candidate neuromodulators that remain to be identified.  相似文献   

6.
Summary The distribution of substance P-like immunoreactivity in the stomatogastric nervous systems of three decapod crustacean species, Cancer borealis, Homarus americanus, and Panulirus interruptus, was studied. The stomatogastric ganglion showed dense staining in the neuropil, but none in the somata. A single neuron stained in the esophageal ganglion. Lucifer yellow backfills and intracellular injections followed by incubation with the substance P antibody showed that the axons of this neuron project into the inferior esophageal nerves towards the paired commissural ganglia. The commissural ganglia showed a pronounced projection from a large bundle of fibers in the anterior medial portion of the circumesophageal connective. Additionally, less dense neuropil and stained somata were seen in the commissural ganglia. Staining was completely blocked by preabsorption with authentic substance P, physalaemin, eledoisin, and substance K. These data suggest that in the nervous system of crustacean species a molecule with C-terminal homology to substance P and other tachykinins is released as a neuroregulator in the stomatogastric ganglion.  相似文献   

7.
Foraging animals must often balance the conflicting demands of finding food and avoiding predators. Temporal variation in predation risk is expected to influence how animals allocate time to these behaviours. Counterintuitively, the proportion of time spent foraging during both high- and low-risk periods should increase with increasing time exposed to high risk. We tested this prediction using intertidal marine snails (Littorina spp.) that were exposed to temporal variation in perceived predation risk from crabs (Cancer productus and Cancer magister). Our results were consistent with those predicted for high-risk, but not low-risk, periods. During high-risk periods, a greater number of snails foraged (versus those that left the water or remained in their shells) as time at high perceived risk increased. For low-risk periods, there was no relationship between the number of snails foraging and time at high risk. This might be due to snails in all treatments foraging maximally in the low-risk periods. As a consequence, the difference in the number of snails foraging between high- and low-risk periods decreased with increasing time subject to high risk. These results indicate that the commonly used protocol of exposing foragers to a single pulse of heightened risk might tend to overestimate their typical investment in anti-predator behaviour.  相似文献   

8.
Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR) to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stable fly, Stomoxys calcitrans, using an immunohistological technique. The location and pattern of the 5-HT IR neurons are described and compared for these two different developmental stages. Anatomical features of the fly feeding system were analyzed in third instar larvae and adult flies using a combination of histological and immunohistological techniques. In third instar larvae, the cibarial dilator muscles were observed within the cibarial pump skeleton and innervated by 5-HT IR neurons in nerves arising from the brain. There were four pairs of nerves arising from the frontal surface of the larval brain that innervate the cibarial pump muscles, pharynx, and muscles controlling the mouth hooks. A strong serotoninergic innervation of the anterior stomatogastric system was observed, which suggests 5-HT may play a role in the coordination of different phases of food ingestion by larvae. Similarly, many 5-HT IR neurons were found in both the brain and the thoracico-abdominal ganglia in the adult, some of which innervate the cibarial pump dilator muscles and the stomatogastric muscles. This is tnhe first report describing neuromuscular structures of the stable fly feeding system. The results reported here suggest 5-HT may play a critical role in feeding behaviors of stable fly larvae and adults.  相似文献   

9.
The effects of the extended FLRFamide-like peptides, TNRNFLRFamide and SDRNFLRFamide, were studied on the stomach musculature of the crab Cancer borealis. Peptide-induced modulation of nerve-evoked contractions was used to screen muscles. All but 2 of the 17 muscles tested were modulated by the peptides. In several muscles of the pyloric region, peptides induced long-lasting myogenic activity. In other muscles, the peptides increased the amplitude of nerve-evoked contractions, excitatory junctional potentials, and excitatory junctional currents, but produced no apparent change in the input resistance of the muscle fibers. The threshold concentration was 10–10 M for TNRNFLRFamide and between 10–9 M to 10–8 M for SDRNFLRFamide. The absence of direct peptidecontaining innervation to these muscles and the wide-spread sensitivity of these muscles to the peptides suggest that TNRNFLRFamide and SDRNFLRFamide may be released from neurosecretory structures to modulate stomatogastric musculature hormonally. We speculate that hormonally released peptide will be crucial for maintaining appreciable muscle contraction in response to low-frequency and low-intensity motor discharge.Abbreviations cpv muscles cardiopyloric valve muscles - CG commissural ganglion - DG neuron dorsal gastric neuron - dgn dorsal gastric nerve - dvn dorsal ventricular nerve - EJC excitatory junctional current - EJP excitatory junctional potential - FaRPs FMRF-amide related peptides - gm muscles gastric mill muscles - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles pyloric muscles - STG stomatogastric ganglion  相似文献   

10.
Arthropod phenoloxidases catalyze the melanization and sclerotization of the new postmolt exoskeleton, and they function in the immune response. Hemocyanin, phylogenetically related to phenoloxidase, can function as a phenoloxidase under certain conditions. We investigated the relative contributions of hemocyte phenoloxidase and hemocyanin in the brachyuran crab Cancer magister, using the physiological ratio at which they occur in the hemolymph, and found that hemocyte phenoloxidase has higher activity. They both convert diphenols to o-quinones, but only the hemocyte phenoloxidase is able to catalyze the conversion of monophenols to diphenols. The quaternary structure of hemocyanin affects its reactivity as phenoloxidase. We suggest that prophenoloxidase is released from hemocytes and moves across epidermis into new exoskeleton during premolt and is activated in early postmolt. In addition to functional studies, we have determined the complete cDNA sequence of C. magister hemocyte prophenoloxidase and partial sequences from the branchiopods Artemia franciscana and Triops longicaudatus. We also sequenced C. magister cryptocyanin 2 and a hemocyanin from the amphipod Cyamus scammoni and used these and other members of the arthropod hemocyanin superfamily for phylogenetic analyses. The phylogenies presented here are consistent with the possibility that a common ancestral molecule had both phenoloxidase and reversible oxygen-binding capabilities.  相似文献   

11.
We stained sarcomere thin filaments with fluorescently labeled phalloidin, measured sarcomere and muscle length, and calculated sarcomere number in pyloric and gastric mill muscles. A wide range of sarcomere lengths (3.25–12.29 μm), muscle lengths (5.9–21.1 mm), and sarcomere numbers (648–3,036) were observed. Sarcomere number differences occurred both because of changes in sarcomere length and muscle length, and sarcomere and muscle length varied independently. This independence, the wide range of sarcomere numbers present, and the muscles being all ‘slow’, graded muscles allowed us to use these data to test Huxley and Neidergerke’s (1954) hypothesis that muscle dynamics depend on sarcomere number. The time constants of exponential fits to contraction relaxations were used to measure muscle dynamics, and comparison of theoretical predictions and experimental results quantitatively confirm the predicted dependence. The differing dynamics of the various pyloric muscles are likely functionally important, and the dependence of muscle dynamics on sarcomere number implies that sarcomere number is likely closely regulated in these muscles. The stomatogastric system may thus be an excellent model system for studying the mechanisms regulating muscle sarcomere number.  相似文献   

12.
Sensory neurons provide important feedback to pattern-generating motor systems. In the crustacean stomatogastric nervous system (STNS), feedback from the anterior gastric receptor (AGR), a muscle receptor neuron, shapes the activity of motor circuits in the stomatogastric ganglion (STG) via polysynaptic pathways involving anterior ganglia. The AGR soma is located in the dorsal ventricular nerve posterior to the STG and it has been thought that its axon passes through the STG without making contacts. Using high-resolution confocal microscopy with dye-filled neurons, we show here that AGR from the crab Cancer borealis also has local projections within the STG and that these projections form candidate contact sites with STG motor neurons or with descending input fibers from other ganglia. We develop and exploit a new masking method that allows us to potentially separate presynaptic and postsynaptic staining of synaptic markers. The AGR processes in the STG show diversity in shape, number of branches and branching structure. The number of AGR projections in the STG ranges from one to three simple to multiply branched processes. The projections come in close contact with gastric motor neurons and descending neurons and may also be electrically coupled to other neurons of the STNS. Thus, in addition to well described long-loop pathways, it is possible that AGR is involved in integration and pattern regulation directly in the STG.  相似文献   

13.
The alpha 2-macroglobulins are large molecular weight proteinase-binding proteins that inhibit the ability of proteinases to hydrolyze protein substrates without suppressing activity against amide or ester substrates. They are also able to protect the active site of bound proteinases from active site inhibitors of suitably high molecular weight. The ability to protect the amidolytic activity of trypsin from the macromolecular active site inhibitor, soybean trypsin inhibitor, was used to demonstrate an alpha 2-macroglobulinlike activity in the blood of the horseshoe crab, Limulus polyphemus and the crustaceans Libinia emarginata (the spider crab) and Cancer borealis (the Jonah crab). The alpha 2-macroglobulinlike activities of L. polyphemus and L. emarginata are sensitive to methylamine, but that of C. borealis is relatively insensitive. The molecular weights (mw) of the trypsin-protecting proteins in L. emarginata and C. borealis, estimated from gelfiltration studies, are, respectively, 480 X 10(3) and 460 X 10(3), and are significantly smaller than that of L. polyphemus (Mr = 570 X 10(3)).  相似文献   

14.
Edible West Coast crabs (Cancer magister and C. antennarius) were contaminated with bacteriophage and then held in a chilled or frozen state. Results indicated a significant survival of virus regardless of storage conditions.  相似文献   

15.
The properties of glutamate-activated excitatory currents on the gm6 muscle from the foregut of the spiny lobsters Panulirus argus and interruptus and the crab Cancer borealis were examined using either noise analysis, analysis of synaptic current decays, or slow iontophoretic currents. The properties of acetylcholine currents activated in nonjunctional regions of the gm6 muscle were also examined. At 12 degrees C and -80 mV, the predominant time constant of power spectra from glutamate-activated current noise was approximately 7 ms and the elementary conductance was approximately 34 pS. At 12 degrees C and -80 mV, the predominant time constant of acetylcholine- activated channels was approximately 11 ms with a conductance of approximately 12 pS. Focally recorded glutamatergic extracellular synaptic currents on the gm6 muscle decayed with time constants of approximately 7-8 ms at 12 degrees C and -80 mV. The decay time constant was prolonged e-fold about every 225-mV hyperpolarization in membrane potential. The Q10 of the time constant of the synaptic current decay was approximately 2.6. The voltage dependence of the steady-state conductance increase activated by iontophoretic application of glutamate has the opposite direction of the steady-state conductance activated by cholinergic agonists when compared on the gm6 muscles. The glutamate-activated conductance increase is diminished with hyperpolarization. The properties of the marine crustacean glutamate channels are discussed in relation to glutamate channels in other organisms and to the acetylcholine channels found on the gm6 muscle and the gm1 muscle of the decapod foregut (Lingle and Auerbach, 1983).  相似文献   

16.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   

17.
The stomatogastric nervous system of crustaceans, which controlsthe four parts ofthe foregut, is subject to modulation at alllevels, sensory, central and motor. Modulation of the centralpattern generators, which are themselves made up largely ofmotor neurons, providesfor increased behavioral flexibilityin a variety of ways. First, each of the pattern generatorscan be reconfigured to give multiple outputs. Second, the "boundaries"of the different pattern generators are in fact somewhat fluid,so that the neuronal composition of the pattern generators canbe altered. For example, neurons can switch from one patterngenerator toanother, or two or more pattern generators can fuseto generate an entirely new pattern and thereby produce a newbehavior. The mechanisms responsible for many of these modulationsinclude alterations of both intrinsic properties and synapticinteractions between neurons. In addition, the alteration ofmembrane properties contributes more directly to the behavioraloutput by changing action potential frequency. Finally, themuscles of the stomatogastric system can themselves be modulated,with the cpvl muscle, for example, becoming an endogenous oscillatorin the presence of either dopamine or the peptide FMRFamide.  相似文献   

18.
Neuropeptides in the stomatogastric ganglion (STG) and the brain of adult and late embryonic Homarus americanus were compared using a multi-faceted mass spectral strategy. Overall, 29 neuropeptides from 10 families were identified in the brain and/or the STG of the lobster. Many of these neuropeptides are reported for the first time in the embryonic lobster. Neuropeptide extraction followed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry enabled confident identification of 24 previously characterized peptides in the adult brain and 13 peptides in the embryonic brain. Two novel peptides (QDLDHVFLRFa and GPPSLRLRFa) were de novo sequenced. In addition, a comparison of adult to embryonic brains revealed the presence of an incompletely processed form of Cancer borealis tachykinin-related peptide 1a (CabTRP 1a, APSGFLGMRG) only in the embryonic brain. A comparison of adult to embryonic STGs revealed that QDLDHVFLRFa was present in the embryonic STG but absent in the adult STG, and CabTRP 1a exhibited the opposite trend. Relative quantification of neuropeptides in the STG revealed that three orcokinin family peptides (NFDEIDRSGFGF, NFDEIDRSGFGFV, and NFDEIDRSGFGFN), a B-type allatostatin (STNWSSLRSAWa), and an orcomyotropin-related peptide (FDAFTTGFGHS) exhibited higher signal intensities in the adult relative to the embryonic STG. RFamide (Arg-Phe-amide) family peptide (DTSTPALRLRFa), [Val1]SIFamide (VYRKPPFNGSIFa), and orcokinin-related peptide (VYGPRDIANLY) were more intense in the embryonic STG spectra than in the adult STG spectra. Collectively, this study expands our current knowledge of the H. americanus neuropeptidome and highlights some intriguing expression differences that occur during development.  相似文献   

19.
The morphometry, histochemistry, and biomechanical relationships of rectus capitis muscles were examined in adult cats. This family of muscles contained six members on the dorsal, ventral, and lateral aspects of the upper cervical vertebral column. Three dorsal muscles (rectus capitis posterior major, medius, and minor) formed a layered complex spanning from C1 and C2 to the skull. Rectus capitis posterior major was composed predominantly of fast fibers, but the other two deeper muscles contained progressively higher proportions of slow fibers. One ventral muscle, rectus capitis anterior major, was architecturally complex. It originated from several cervical vertebrae and appeared to be divided into two different heads. In contrast, rectus capitis anterior minor and rectus capitis lateralis were short, parallel-fibered muscles spanning between the skull and C1. The ventral muscles all had nonuniform distributions of muscle-fiber types in which fast fibers predominated. Dorsal and ventral muscle groupings usually had cross-sectional areas of 0.5 cm2 or more, reflecting a potential capacity to generate maximal tetanic force in excess of 9 N. Biomechanical analyses suggested that one muscle, rectus capitis lateralis, had its largest moment in lateral flexion, whereas the other muscles had large, posturally dependent moment arms appropriate for actions in flexion-extension. The observation that most rectus muscles have relatively large cross-sectional areas and high fast-fiber proportions suggests that the muscles may have important phasic as well as postural roles during head movement. © 1993 Wiley-Liss, Inc.  相似文献   

20.
An octadecapeptide capable of inducing pigment dispersion in the chromatophores of the fiddler crab Uca pugilator has been isolated from lyophilized heads of the lubber grasshopper Romalea microptera. This pigment-dispersing factor (PDF) was purified by gel filtration, ion-exchange chromatography, partition chromatography, and reversed-phase high performance liquid chromatography. Automated gas-phase sequencing, followed by the identification of the carboxyl-terminal amide, established the primary structure of this PDF as Asn-Ser-Glu-Ile-Ile-Asn-Ser-Leu-Leu-Gly-Leu-Pro-Lys-Leu-Leu-Asn-Asp-Ala- NH2. This structure was confirmed by chemical synthesis and by demonstrating that the synthetic and native PDF displayed identical chromatographic behavior and biological activity. The Romalea PDF is structurally related to the crustacean pigment-dispersing hormones (PDHs), which are also octadecapeptides. The sequence of grasshopper PDF shows 78% homology with beta-PDH (from the crabs U. pugilator and Cancer magister) and 50% homology with alpha-PDH (from the prawn Pandalus borealis). This study provides the first direct chemical evidence for the structural relatedness of insect PDF to the crustacean PDHs, thus identifying them as an authentic family of arthropod peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号