首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian pyrroline-5-carboxylate (PC) synthase in the mitochondrial membrane of rat small intestine mucosa possesses marked thermal instability at temperatures of 30 to 37 degrees C [Y. Wakabayashi, J. G. Henslee, and M. E. Jones (1983) J. Biol. Chem. 258, 3873-3882]. Factors stabilizing the enzyme activity at 37 degrees C were extensively examined by incubating the enzyme with various compounds before assay. In the presence of 60% sorbitol, the enzyme retained full activity for 30 min. Xylitol, glycerol, and fructose were also effective, although sucrose, ethylene glycol, polyethylene glycol and dimethyl sulfoxide were ineffective. AMP, GMP, IMP, and UMP (15 mM) were completely protective while ATP and adenosine were not. Phosphate and arsenate at 10 mM maintained 90 and 82%, respectively, of the original activity after 10 min. NADPH and NADP (3 mM) were protective whereas 3 mM NADH was not. The possibility that phosphate and NADPH are stabilizing PC synthase in vivo was discussed. Addition of 0.13 mM p-chloromercuriphenylsulfonic acid or 0.55 mM 5,5'-dithiobis-(2-nitrobenzoic acid) to the enzyme resulted in complete loss of activity, but prior addition of excess dithiothreitol to the enzyme prevented the inactivation, suggesting that a sulfhydryl group is involved in the activity.  相似文献   

2.
Incubation of rat adipocytes with 1 microM-noradrenaline caused a decrease in both the N-ethylmaleimide-sensitive (microsomal) and N-ethylmaleimide-insensitive (mitochondrial) glycerol phosphate acyltransferase activities measured in homogenates from freeze-stopped cells. The effects of noradrenaline on glycerol phosphate acyltransferase activity were apparent over a wide range of concentrations of glycerol phosphate and palmitoyl-CoA. The effect of noradrenaline was reversed within cells by the subsequent addition of insulin or propranolol. Inclusion of albumin in homogenization buffers abolished the effect of noradrenaline on the N-ethylmaleimide-sensitive activity. The effect of noradrenaline on the N-ethylmaleimide-insensitive (mitochondrial) activity was, however, not abolished by inclusion of albumin in buffers for preparation of homogenates from freeze-stopped cells. Inclusion of fluoride in homogenization buffers did not alter the observed effect of noradrenaline. The inactivating effect of noradrenaline persisted through the subcellular fractionation procedures used to isolate adipocyte microsomes (microsomal fractions). The effect of noradrenaline on mitochondrial glycerol phosphate acyltransferase did not persist through subcellular fractionation. Noradrenaline treatment of cells significantly decreased the Vmax. of glycerol phosphate acyltransferase in isolated microsomes without changing the activity of NADPH-cytochrome c reductase. Glycerol phosphate acyltransferase activity in microsomes from noradrenaline-treated cells is unstable, being rapidly lost on incubation at 30 degrees C. Bivalent metal ions (Mg2+, Ca2+) or post-microsomal supernatant protected against this inactivation. Glycerol phosphate acyltransferase activity in microsomes from noradrenaline-treated cells could not be re-activated by incubation with either alkaline phosphatase or phosphoprotein phosphatase-1. Addition of cyclic AMP-dependent protein kinase catalytic subunits to adipocyte microsomes incubated with [gamma-32P]ATP considerably increased the incorporation of 32P into microsomal protein, but did not cause inactivation of glycerol phosphate acyltransferase. These findings provide no support for the proposal that inactivation of adipocyte microsomal glycerol phosphate acyltransferase by noradrenaline is through a phosphorylation type of covalent modification.  相似文献   

3.
Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa   总被引:3,自引:0,他引:3  
The mitochondria of rat intestinal mucosa were found to have an enzymatic activity that converts radioactive glutamate to pyrroline-5-carboxylate (P5C) in the presence of ATP, NADPH, and MgCl2. The product of this enzyme was identified as P5C by the fact that it was converted to proline by chemical reduction with NaBH4 or by enzymatic reduction with NADH in the presence of purified yeast P5C reductase. The product was demonstrated to be P5C rather than pyrroline-2-carboxylate by thin layer chromatography. The presence of the activity in mitochondria prepared from intestinal mucosa of germ-free rats proved that this activity is of mammalian origin. Omission of either ATP, NADPH, or MgCl2 from the reaction mixture resulted in little or no activity. The optimal pH appeared to be about 7.0 under the conditions used. Substrate saturation curves in the presence of an ATP and an NADPH regeneration system gave apparent Km values of 2.5 mM for glutamate, 0.19 mM for ATP, and 6.5 microM for NADPH in the presence of 20 mM MgCl2. The mitochondrial preparation usually produced P5C at a rate of 1.2 to 1.6 nmol/mg/min at 20 degrees C when incubated with 1 mM glutamate, 3 mM ATP, 0.2 mM NADPH, and 20 mM MgCl2.  相似文献   

4.
Washed boar spermatozoa incubated in the absence of exogenous substrates maintained a high energy charge potential (ECP) for at least 10 h. Addition of bromopyruvate, an inhibitor of stage 2 of the glycolytic pathway, at any time during the incubation caused an immediate decrease in the ECP, indicating that the mobilization of endogenous compounds requires this section of the pathway for the production of lactate, the major mitochondrial substrate for ATP production. Some of the sources of the metabolic substrates have been identified, by NMR and metabolic studies, as di- or triglycerides, to produce glycerol, and membrane phospholipids for the production of glycerol 3-phosphate. Acetylcarnitine contributes acetyl groups early in the incubation; glycerylphosphorylcholine is degraded to glycerol 3-phosphate and choline after about 5 h, and acetate also accumulates after about 5 h. The presence of phosphorylcholine and phosphorylethanolamine later in the incubation indicates that phospholipids are also degraded to glycerol.  相似文献   

5.
CTP:phosphatidate cytidylyltransferase (CDP-diacylglycerol synthase; EC 2.7.7.41) was identified in the cell envelope fraction of the gram-positive anaerobe Clostridium perfringens. The association of this enzyme with the cell envelope fraction of cell extracts was demonstrated by glycerol density gradient centrifugation and by activity sedimenting with the 100,000 x g pellet. The enzyme exhibited a broad pH optimum between pH 6.5 and pH 7.5. Enzyme activity was dependent on magnesium (5 mM) or manganese (1 mM) ions. Activity was also dependent on the addition of the nonionic detergent Triton X-100 (5 mM). The apparent Km values for CTP and phosphatidic acid were 0.18 mM and 0.22 mM, respectively. Thioreactive agents inhibited activity, indicating that a sulfhydryl group is essential for activity. Maximal enzyme activity was observed at 50 degrees C.  相似文献   

6.
CDP-diacylglycerol synthase activity in Clostridium perfringens.   总被引:6,自引:0,他引:6       下载免费PDF全文
CTP:phosphatidate cytidylyltransferase (CDP-diacylglycerol synthase; EC 2.7.7.41) was identified in the cell envelope fraction of the gram-positive anaerobe Clostridium perfringens. The association of this enzyme with the cell envelope fraction of cell extracts was demonstrated by glycerol density gradient centrifugation and by activity sedimenting with the 100,000 x g pellet. The enzyme exhibited a broad pH optimum between pH 6.5 and pH 7.5. Enzyme activity was dependent on magnesium (5 mM) or manganese (1 mM) ions. Activity was also dependent on the addition of the nonionic detergent Triton X-100 (5 mM). The apparent Km values for CTP and phosphatidic acid were 0.18 mM and 0.22 mM, respectively. Thioreactive agents inhibited activity, indicating that a sulfhydryl group is essential for activity. Maximal enzyme activity was observed at 50 degrees C.  相似文献   

7.
We have recently solubilized and enriched a chloride- and calcium-dependent glutamate-binding protein from rat brain (Brose, N., Halpain, S., Suchanek, C., and Jahn, R. (1989) J. Biol. Chem. 264, 9619-9625). The partially purified protein fraction, containing two major protein components of 51,000 Da and 105,000 Da, was used to generate a rabbit antiserum. This serum quantitatively precipitated the binding activity from membrane extracts. Small amounts of the antiserum inhibited glutamate binding when chloride was absent from the incubation medium. Three protein bands were labeled by the serum on immunoblots. From the affinity purified antibody fractions contained in the serum, only the antibodies directed against a 51,000-Da protein were able to immunoprecipitate the binding activity, indicating that this protein is an essential component of the binding site. A survey of a variety of rat tissues by immunoblot analysis revealed a ubiquitous distribution of the protein. After subcellular fractionation of liver and brain, the 51,000-Da protein copurified with mitochondrial markers. Furthermore, exclusive labeling of mitochondria was observed by light and electron microscopy immunocytochemistry. Subfractionation of purified liver mitochondria resulted in a selective association of the protein with inner mitochondrial membranes. Pharmacological characterization of glutamate binding to liver mitochondrial membranes revealed a pattern almost identical to that of the chloride- and calcium-dependent glutamate-binding site in rat brain.  相似文献   

8.
Cyclic AMP phosphodiesterase (PDE) activity was assayed in the plasma membrane, mitochondrial and microsomal fractions of rat brain. The specific activity of the enzyme was highest in the plasma membrane fraction followed by mitochondrial and then the microsomal fraction. Phosphodiesterase activity of all three fractions was reduced after pretreatment with lecithinase C (PCase) from Clostridium perfringens but less markedly affected by the pretreatment with sphingomyelinase (SMase) from human placenta. The PDE activity of the plasma membrane fraction was more sensitive to PCase treatment compared with the other two particulate fractions, which showed only a slight loss of activity. Temperature seemed to affect PDE activity of the plasma membrane. The enzyme was quite stable at 30 degrees C but its activity dropped by approximately 46% at 37 degrees C after 90 min of incubation. Pretreatment of the plasma membrane at 30 degrees C with PCase at a concentration of more than 5 U caused a marked loss of PDE activity and the decrease in activity reached a plateau at concentrations above 10 U.  相似文献   

9.
Carbamoyl phosphate synthetase (CPS) from rat liver is proteolitically inactivated at acid pH by broken lysosomes. Inactivation increases when lysosomes are previously incubated with inner mitochondrial membrane, although this mitochondrial fraction does not inactivate CPS 'per se'. The increased degradation is due to membrane factor(s), most probably mitochondrial proteinase(s), solubilized by lysosomal matrix proteinases, after incubation of the inner mitochondrial membrane fraction with broken lysosomes. This (these ) factor(s) degrade(s) CPS and other proteins in the absence of lysosomal proteinases or when these are inhibited by leupeptin, chymostatin and pepstatin. We have also tested the possible regulation of this degradation and found that ATP and, particularly, acetyl glutamate accelerate the degradation of CPS by the factor(s) liberated from the inner mitochondrial membrane.  相似文献   

10.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

11.
The formation of delta-aminolevulinic acid, the first committed precursor of chlorophyll biosynthesis, occurs in the chloroplast of plants and algae by the C5-pathway, a three-step, tRNA-dependent transformation of glutamate. Previously, we reported the purification and characterization of the first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase from the green alga Chlamydomonas reinhardtii (Chen, M.-W., Jahn, D., Sch?n, A., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4054-4057 and Chen, M.-W., Jahn, D., O'Neill, G. P., and S?ll, D. (1990) J. Biol. Chem. 265, 4058-4063). Here we present the purification of the third enzyme of the pathway, the glutamate-1-semialdehyde aminotransferase from C. reinhardtii. The enzyme was purified from the membrane fraction of a whole cell extract employing four different chromatographic separations. The apparent molecular mass of the protein was approximately 43,000 Da as analyzed by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by nondenaturing rate zonal sedimentation on glycerol gradients, and by gel filtration. By these criteria, the enzyme in its active form is a monomer of 43,000 Da. In the presence of pyridoxal 5'-phosphate, purified glutamate-1-semialdehyde aminotransferase converts synthetic glutamate 1-semialdehyde to delta-aminolevulinic acid. The enzyme is inhibited by gabaculine and aminooxyacetate, both typical inhibitors of aminotransferases. The purified glutamate-1-semialdehyde aminotransferase successfully reconstitutes the whole C5-pathway in vitro from glutamate in the presence of purified glutamyl-tRNA synthetase, glutamyl-tRNA reductase, Mg2+, ATP, NADPH, tRNA, and pyridoxal 5'-phosphate.  相似文献   

12.
Preparation of rat enterocyte mitochondria.   总被引:9,自引:3,他引:6       下载免费PDF全文
Rat enterocyte mitochondria were prepared with respiratory control ratios of 4 or 5 and occasionally 6. When EGTA was excluded from the mitochondrial incubation medium the calculated P/O ratios were high, especially those based on the first addition of ADP. These ratios were lowered by increasing the EGTA concentration from 1 mM to 2 mM in the mitochondrial preparation medium and including 1 mM-EGTA in the incubation medium. The use of EDTA in the enterocyte isolation medium led to the mitochondria requiring added cytochrome c. Substituting EGTA for EDTA abolished this requirement. The mitochondrial fraction consisted of two components, an upper cream-coloured layer rich in DNA and a lower brown-coloured layer poor in DNA. Both components were capable of oxidative phosphorylation with succinate or the glutamate/malate couple as substrates. The mitochondrial yield was assessed by assaying succinate dehydrogenase activity, and the contamination of the mitochondrial fraction by other cell organelles was assessed by assays for appropriate marker enzymes.  相似文献   

13.
This study examined the effect of cryoprotectants (20% DMSO, a 10% DMSO/10% glycerol mixture, 20% glycerol and 1 M sucrose solution) on kangaroo sperm structure and function, along with the effect of varying concentrations of glycerol on sperm mitochondrial function. Eastern grey kangaroo cauda epididymidal spermatozoa were incubated for 10 min at 35 °C in each cryoprotectant and the plasma membrane integrity (PMI) and motility assessed using light microscopy. The same samples were fixed for TEM and the ultrastructural integrity of the spermatozoa examined. To investigate the effect of glycerol on the kangaroo sperm mitochondrial function, epididymidal spermatozoa were incubated with JC-1 in Tris–citrate media at 35 °C for 20 min in a range of glycerol concentrations (0%, 5%, 10%, 15% and 20%) and the mitochondrial membrane potential (MMP) and plasma membrane integrity determined. As expected, incubation of spermatozoa in 20% glycerol for 10 min resulted in a significant reduction in motility, PMI and ultrastructural integrity. Interestingly, incubation in 20% DMSO resulted in no significant reduction in motility or PMI but a significant loss of structural integrity when compared to the control spermatozoa (0% cryoprotectant). However, 20% DMSO was overall less damaging to sperm ultrastructure than glycerol, a combination of 10% glycerol and 10% DMSO, and sucrose. While all glycerol concentrations had an adverse effect on mitochondrial function, the statistical models presented for the relationship between MMP and glycerol predicted that spermatozoa, when added to 20% glycerol, would lose half of their initial MMP immediately at 35 °C and MMP would halve after 19.4 min at 4 °C. Models for the relationship between PMI and glycerol predicted that spermatozoa would lose half of their initial PMI after 1.8 min at 35 °C and PMI would halve after 21.1 min at 4 °C. These results suggest that if glycerol is to be used as a cryoprotectant for kangaroo spermatozoa then it is best administered at 4 °C and that mitochondrial function is more sensitive to glycerol than PMI. Future research should be directed at investigating strategies that reduce exposure of spermatozoa to glycerol during processing and that test the cryoprotective properties of 20% DMSO for kangaroo spermatozoa.  相似文献   

14.
Separation of Neurospora mitochondrial outer membranes from the inner membrane/matrix fraction was effected by digitonin treatment and discontinuous density gradient centrifugation. The solubilization of four isoleucine-valine biosynthetic enzymes was studied as a function of digitonin concentration and time of incubation in the detergent. The kinetics of the appearance of valine biosynthetic function in fractions outside of the inner membrane/matrix fraction, coupled with enzyme solubilization patterns similar to that for the matrix marker, mitochondrial malate dehydrogenase, indicate that the four isoleucine-valine pathway enzymes are localized in the mitochondrial matrix.  相似文献   

15.
To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate-treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH-b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3-phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate-treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time-dependent, an index of the progressive damage of the cell.  相似文献   

16.
Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol.  相似文献   

17.
Nifurtimox and nitrofurantoin are reduced by intact rat liver mitochondria to nitro anion radicals whose autoxidation generates superoxide anion as detected by direct electron spin resonance spectroscopy and by spin-trapping experiments, respectively. Although nitroreduction occurred in the presence of respiratory substrates such as beta-hydroxybutyrate, malate-glutamate, succinate, or endogenous substrates, nitro anion radical formation activity was much greater on addition of exogenous reduced pyridine nucleotides. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H nitroreductase reactions unless the mitochondria were solubilized by detergent. In addition, NAD(P)H nitroreductase activity was detected in the crude mitochondrial outer membrane fraction, with a higher activity than in mitoplasts and intact mitochondria. These results provide direct evidence of a nitrofuran reductase activity associated with the mitochondrial outer membrane that is far more important than that of respiratory chain enzymes.  相似文献   

18.
The intracellular distribution of phosphodiesterase [EC 3.1.4.17] induced by cyclic adenosine 3',5'-monophosphate (cAMP) in Dictyostelium discoideum was studied. When cAMP-treated cells were homogenized and fractionated according to the method of de Duve et al. ((1955) Biochem, J. 60, 604), the specific activity of phosphodiesterase was highest in the light mitochondrial fraction. Peaks of specific activities of alkaline phosphatase (marker enzyme of membrane) and catalase (marker enzyme of peroxisomes) also appeared in the same fraction as phosphodiesterase. However, after centrifugation of the light mitochondrial fraction in a sucrose density gradient, the activity of phosphodiesterase was clearly separated with that of catalase (density 1.19 g/ml) and showed three peaks at lower density (1.10, 1.13, 1.17 g/ml) with good reproducibility. Some parts (1.13, 1.17 g/ml) of the activity in the gradient overlapped with alkaline phosphatase activity, but in the density fraction of 1.10 g/ml the activity of alkaline phosphatase was hardly detectable. When the light mitochondrial fraction was treated with Emulgen 108, or sonicated, phosphodiesterase was more easily solubilized than alkaline phosphatase and catalase, and was found in supernate after centrifugation at 20,000 X g for 30 min. In order to distinguish the locations of the three enzymes, the supernatant of the light mitochondrial fraction treated with Emulgen 108 was subjected to charge shift electrophoresis. The electrophoretic mobilities of phosphodiesterase and catalase were unaffected by ionic detergent. However, alkaline phosphatase shifted towards the anode in the presence of anionic detergent (sodium deoxycholate), and shifted towards the cathode in cationic detergent (cetyltrimethylammonium bromide), relative to nonionic detergent (Emulgen 108) alone. Thus, some part of the phosphodiesterase induced by cAMP may be associated with the plasma membrane, but the remainder is localized in some kind of intracellular particle of lower density. Moreover, the association with the membrane or particle is more easily dissociated than that of alkaline phosphatase, and the liberated phosphodiesterase is rather hydrophilic.  相似文献   

19.
The mitoplasts were prepared from bullfrog (Rana catesbeiana) liver mitochondria by treatment with digitonin and were then separated into the matrix and inner membrane fractions. The matrix fraction thus obtained was free of lysosomal contaminations and exhibited a distinct proteinase activity. pH dependency of the matrix proteinase activity measured in the presence and absence of iodoacetamide revealed that the matrix contained at least two kinds of proteinase, a major alkaline thiol proteinase having an optimal pH at 8.5 and a minor neutral proteinase having an optimal pH at 7.5. The major matrix proteinase activity was strongly inhibited by leupeptin, chymostatin, antipain and E64-C, an inhibitor of Ca2+-dependent thiol proteinase, while it was scarcely affected by diethylpyrocarbonate. The activity was also inhibited by DTNB and p-chloromercuribenzoate. Addition of hydrocarbon compounds such as ethylene glycol, glycerol, Triton X-100 and poly (ethylene glycol) to the reaction mixture was found to decrease the matrix proteinase activity. Neither cytochrome c nor glutamate dehydrogenase was hydrolyzed when subjected to the matrix proteinase activity in vitro. On the other hand, cytochrome c oxidase was effectively hydrolyzed, and the enzyme associated with the mitochondrial innermembrane fragments was partially hydrolyzed by the major matrix proteinase activity.  相似文献   

20.
Glycerol is effective in the treatment of brain oedema but it is unclear if this is due solely to osmotic effects of glycerol or whether the brain may metabolize glycerol. We found that intracerebral injection of [14C]glycerol in rat gave a higher specific activity of glutamate than of glutamine, indicating neuronal metabolism of glycerol. Interestingly, the specific activity of GABA became higher than that of glutamate. NMR spectroscopy of brains of mice given 150 micromol [U-13C]glycerol (0.5 m i.v.) confirmed this predominant labelling of GABA, indicating avid glycerol metabolism in GABAergic neurones. Uptake of [14C]glycerol into cultured cerebellar granule cells was inhibited by Hg2+, suggesting uptake through aquaporins, whereas Hg2+ stimulated glycerol uptake into cultured astrocytes. The neuronal metabolism of glycerol, which was confirmed in experiments with purified synaptosomes and cultured cerebellar granule cells, suggested neuronal expression of glycerol kinase and some isoform of glycerol-3-phosphate dehydrogenase. Histochemically, we demonstrated mitochondrial glycerol-3-phosphate dehydrogenase in neurones, whereas cytosolic glycerol-3-phosphate dehydrogenase was three to four times more active in white matter than in grey matter, reflecting its selective expression in oligodendroglia. The localization of mitochondrial and cytosolic glycerol-3-phosphate dehydrogenases in different cell types implies that the glycerol-3-phosphate shuttle is of little importance in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号