首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the mammalian oocyte, the cAMP-dependent protein kinase (PKA) has critical functions in the maintenance of meiotic arrest and oocyte maturation. Because PKA is spatially regulated, its localization was examined in developing oocytes. Both regulatory subunits (RI and RII) and the catalytic subunit (C) of PKA were found in oocytes and metaphase II-arrested eggs. In the oocyte, RI and C were predominantly localized in the cortical region, while RII showed a punctate distribution within the cytoplasm. After maturation to metaphase II, RI remained in the cortex and was also localized to the meiotic spindle, while RII was found adjacent to the spindle. C was diffuse within the cytoplasm of the egg but was enriched in the cytoplasm surrounding the metaphase spindle, much like RII. The polarized localization and redistribution of RI, RII, and C suggested that PKA might be tethered by A-kinase anchor proteins (AKAPs), proteins that tether PKA close to its physiological substrates. An AKAP, AKAP140, was identified that was developmentally regulated and phosphorylated in oocytes and eggs. AKAP140 was shown to be a dual-specific AKAP, having the ability to bind both RI and RII. By compartmentalizing PKA, AKAP140 and/or other AKAPs could spatially regulate PKA activity during oocyte development.  相似文献   

3.
Truncated cyclin A and cyclin B lacking the N-terminal domain comprising the 'destruction box' escape from proteolysis and arrest cells at metaphase. Mutation of a conserved arginine residue of the destruction domain makes cyclin B resistant to proteolysis. Here we show that mutation of the same residue also makes cyclin A resistant to proteolysis, in either of two situations in which the cyclin degradation pathway is turned on: (i) in Xenopus extracts of activated eggs where the degradation pathway has been permanently turned on by adding a recombinant undegradable cyclin B in which the arginine residue of the destruction box has been substituted by alanine; (ii) in extracts of metaphase II-arrested oocytes after Ca(2+)-dependent inactivation of the cytostatic factor (CSF).  相似文献   

4.
Phosphatidylinositol phosphate (PIP) kinase activity is localized to the cortical region of unfertilized sea urchin eggs, while phosphatidylinositol (PI) kinase activity is found in both cortical and noncortical membranes. Following fertilization PIP kinase activity decreases, while PI kinase activity remains unchanged. The selective loss of PIP kinase activity is related to cortical granule exocytosis since the drop in activity does not occur if exocytosis is prevented by high hydrostatic pressure. When isolated cortices are exposed to elevated concentrations of calcium, both the PI and PIP kinase activities increase, suggesting that activation of these enzymes might occur when calcium levels increase within the fertilized egg prior to cortical granule exocytosis. The polyamine spermine also stimulates the formation of phosphatidylinositol bisphosphate at physiological concentrations.  相似文献   

5.
The dynamic of the phosphatidylinositol (PI), the phosphatidylinositol 4-phosphate (PIP) and the phosphatidylinositol-4,5-diphosphate (PIP2) contents were studied in the correlation with the neuronal spike activity in cat brain cortex under acute oxygen deficiency caused by cessation of artificial ventilation for 1, 2.5 and 5 min. It was shown that the 1-min anoxia produced the depression of both PIP and PIP2 contents. The depression was followed by the development of the 'asphyxia neuronal activation'. During 2.5 and 5 min of anoxia the decrease of PIP2 content and increase of PIP one were detected against a background of neuronal bioelectrical activity depression. The PI content was constant during all the anoxic period.  相似文献   

6.
The quantitative relationship between phosphoinositides and free fatty acids (FFAs) in brain ischemia was studied by measuring contents of individual fatty acids in phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid (PA), diacylglycerol (DAG), and the FFA pool. Various periods of complete ischemia (1, 3, 10, and 30 min) were produced by decapitation. Ischemia of 1-3 min caused rapid decreases in PIP2 and PIP content together with preferential production of stearic and arachidonic acids in the DAG and FFA pools. The decrement in levels of these fatty acid residues in polyphosphoinositides was sufficient to account for their increment in levels in the enlarged DAG and FFA pools. After 10 min of ischemia, levels of PIP2, PIP, and DAG approached plateau values, but levels of all FFAs continued to increase. The increases in content of DAG and FFAs at later ischemic periods could not be accounted for by the decreases in content of PIP2 and PIP, PI and PA levels showed only transient and subtle changes. These results indicate that, at the onset of ischemia, phosphodiesteric cleavage of PIP2 and PIP and subsequent deacylation by lipases are primarily responsible for the preferential increase in levels of free stearic and arachidonic acids and that, later, hydrolysis of other phospholipids plays a major role in the continuous accumulation of FFAs.  相似文献   

7.
The molecular basis for asymmetric meiotic divisions in mammalian oocytes that give rise to mature eggs and polar bodies remains poorly understood. Previous studies demonstrated that the asymmetrically positioned meiotic chromosomes provide the cue for cortical polarity in mouse oocytes. Here we show that the chromatin-induced cortical response can be fully reconstituted by injecting DNA-coated beads into metaphase II-arrested eggs. The injected DNA beads induce a cortical actin cap, surrounded by a myosin II ring, in a manner that depends on the number of beads and their distance from the cortex. The Ran GTPase plays a critical role in this process, because dominant-negative and constitutively active Ran mutants disrupt DNA-induced cortical polarization. The Ran-mediated signaling to the cortex is independent of the spindle but requires cortical myosin II assembly. We hypothesize that a Ran(GTP) gradient serves as a molecular ruler to interpret the asymmetric position of the meiotic chromatin.  相似文献   

8.
H Rime  R Ozon 《Developmental biology》1990,141(1):115-122
Histone H1 kinase and protein phosphorylation have been studied in mouse oocyte. Histone H1 kinase activity increases when the oocyte enters M-phase at the time of GVBD and is paralleled with a burst of protein phosphorylation. This activity dramatically drops after parthenogenetic activation induced by puromycin. Okadic acid (OA), a potent inhibitor of protein phosphatases, induces GVBD when oocytes are arrested in the first meiotic prophase by dbc-AMP; the continuous presence of the phosphatase inhibitor, however, inhibits the polymerization of metaphase microtubules. Following activation of metaphase II-arrested mouse eggs by puromycin, OA can induce the breakdown of the nuclear envelope and the activation of histone H1 kinase. This indicates that in the absence of protein synthesis, and therefore of cyclin synthesis, inhibition of protein phosphatases may be sufficient to induce the entry into M-phase during the first cell cycle of the mouse parthenogenetic activated oocyte.  相似文献   

9.
During the successive interphases of cleaving mouse embryos the nuclear periphery diminishes its reactivity to anti-lamin A and C antibodies. This developmentally regulated characteristic can be modified by exposure of the blastomere nuclei to metaphase II (M II) oocyte cytoplasm followed by activation. In the current study we define the cytoplasmic conditions necessary for this modification of 8-cell and 16-cell stage nuclei in hybrids obtained by fusion with metaphase II arrested oocytes, oocytes at various time points after parthenogenetic activation, naturally fertilized eggs (zygotes) and interphase 2-cell embryo blastomeres. The intensity of fluorescence obtained with anti-lamins A/C in the blastomere nuclei increases as a result of fusion with freshly activated oocytes or early zygotes (first 3.0-5.5 h in the case of parthenogenetic activation), and not when eggs or 2-cell blastomeres advanced in interphase are used as partners for fusion. This transformation of the A/C lamin pattern is correlated with the ability to promote pronucleus-like growth of blastomere nuclei in hybrids. Blastomere nuclei introduced into M II-arrested oocytes undergo premature chromatin condensation and dissolution of the nuclear lamina. The results are discussed with regard to certain particularities of the first embryonic interphase of the mouse and the potential involvement of nuclear lamins in pronuclear growth.  相似文献   

10.
Phosphatidylinositol phosphate kinases (PIPKs) have important roles in the production of various phosphoinositides. For type I PIP5Ks (PIP5KI), a broad substrate specificity is known. They phosphorylate phosphatidylinositol 4-phosphate most effectively but also phosphorylate phosphatidylinositol (PI), phosphatidylinositol 3-phosphate, and phosphatidylinositol (3,4)-bisphosphate (PI(3, 4)P(2)), resulting in the production of phosphatidylinositol (4, 5)-bisphosphate (PI(4,5)P(2)), phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P(2)), phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P(2)), and phosphatidylinositol (3,4,5)-trisphosphate. We show here that PIP5KIs have also protein kinase activities. When each isozyme of PIP5KI (PIP5KIalpha, -beta, and -gamma) was subjected to in vitro kinase assay, autophosphorylation occurred. The lipid kinase-negative mutant of PIP5KIalpha (K138A) lost the protein kinase activity, suggesting the same catalytic mechanism for the lipid and the protein kinase activities. PIP5KIbeta expressed in Escherichia coli also retains this protein kinase activity, thus confirming that no co-immunoprecipitated protein kinase is involved. In addition, the autophosphorylation of PIP5KI is markedly enhanced by the addition of PI. No other phosphoinositides such as phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, or phosphatidylinositol trisphosphate have such an effect. We also found that the PI-dependent autophosphorylation strongly suppresses the lipid kinase activity of PIP5KI. The lipid kinase activity of PIP5KI was decreased to one-tenth upon PI-dependent autophosphorylation. All these results indicate that the lipid kinase activity of PIP5KI that acts predominantly for PI(4,5)P(2) synthesis is regulated by PI-dependent autophosphorylation in vivo.  相似文献   

11.
The effect of 0.5 mmol/l chlorpromazine (CPZ) on phospholipid metabolism, ATP content, and protein phosphorylation was studied in isolated human platelets. After 30 min incubation CPZ reduced the ATP content of the cells to 17% of the control. At the same time, the radioactivity in 32P prelabelled inositol lipids--phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol (PI), and phosphatidic acid (PA) decreased to 30, 51, and 61% of the controls, respectively, whereas an increase up to 188% of the control was observed in phosphatidylinositol 4-phosphate (PIP). A massive dephosphorylation of proteins was found. Thrombin, added to 32P prelabelled platelets for 90 s, increased the levels of radioactivity in phosphoinositides and PA. When added to CPZ--pretreated 32P prelabelled platelets, thrombin decreased the radio-activity in PIP2, PIP, and PA to 4, 86, and 10% of the control, respectively. We assume that the pharmacological effect of CPZ might be connected with the decreased ATP content, decreased PIP2 pool and with the impairment of protein phosphorylation.  相似文献   

12.
Several plasma membrane phospholipids have been studied for their ability to modulate the activity of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. We show here that phosphatidylinositol phosphate (PIP), phosphatidylinositol bisphosphate (PIP2), and/or the phosphatidylinositol and PIP kinases are localized primarily in the plasma membrane. Previous in vivo studies with S. cerevisiae have shown that large, rapid, and reversible changes occur in the levels of PIP and PIP2 congruent with changes in cellular ATP levels. We demonstrate here that isolated plasma membranes exhibit the same changes in PIP and PIP2 content when they are supplied with or washed free of ATP. Using a mixed micellar assay we systematically studied the efficacy of the plasma membrane lipids in sustaining the activity of the plasma membrane H(+)-ATPase. We demonstrate for the first time that a number of plasma membrane glycerophospholipids effectively stimulate the ATPase, including PIP, PIP2, and cardiolipin. Phosphoinositol-containing sphingolipids, major components of the plasma membrane, are also shown to stimulate the ATPase at significantly lower levels than the glycerophospholipids and must also be considered as important effectors in vivo.  相似文献   

13.
A male infertility-linked human PLCζ (phospholipase Cζ) mutation introduced into mouse PLCζ completely abolishes both in vitro PIP(2) (phosphatidylinositol 4,5-bisphosphate) hydrolysis activity and the ability to trigger in vivo Ca2+ oscillations in mouse eggs. Wild-type PLCζ initiated a normal pattern of Ca2+ oscillations in eggs in the presence of 10-fold higher mutant PLCζ, suggesting that infertility is not mediated by a dominant-negative mechanism.  相似文献   

14.
The properties of the enzymes involved in Ca2+-stimulated breakdown of phosphatidylinositol 4'-phosphate (PIP), phosphatidylinositol 4',5'-bisphosphate (PIP2), and phosphatidic acid (PA) in rabbit erythrocyte ghosts were studied. At 25 degrees C, 1 to 180 microM Ca2+ rapidly stimulated the breakdown of PIP and PIP2, and maximal breakdown occurred within 10 minutes at all Ca2+ concentrations. The rate and the total amount of breakdown of PA, PIP, and PIP2 increased with Ca2+ concentration. MgCl2 inhibited the rate of Ca2+-stimulated breakdown of PIP and PIP2 at Ca2+ concentrations less than 10 microM, but did not have any appreciable effects at higher Ca2+ concentrations. MgCl2 also protected against Ca2+-stimulated breakdown of PA. In the presence and absence of 5 mM MgCl2, Ca2+ stimulated half-maximal breakdown of PIP and PIP2 at 2-3 microM under hypotonic and isotonic conditions. In the presence of 5 mM MgCl2, Ca2+-stimulated breakdown of PIP and PIP2 was associated with the release of Pi and inositol bisphosphate. In the absence of MgCl2, Ca2+ stimulated the release of 32P-labeled Pi, inositol bisphosphate, and inositol trisphosphate from labeled PIP, PIP2, and PA. Ca2+ increased phosphatidylinositol content and decreased PIP and PIP2 content in these membranes. The results of this investigation suggest that Ca2+ stimulates the breakdown of polyphosphoinositides by stimulating polyphosphoinositide phosphomonoesterase and phosphodiesterase activities in rabbit erythrocyte ghosts. These activities were activated by less than 3 microM Ca2+ in the presence of MgCl2 under hypotonic or isotonic conditions. These Ca2+-stimulated polyphosphoinositide phosphoesterase activities could therefore be active under physiological conditions in normal rabbit erythrocytes.  相似文献   

15.
In unfertilized eggs from vertebrates, the cell cycle is arrested in metaphase of the second meiotic division (metaphase II) until fertilization or activation. Maintenance of the long-term meiotic metaphase arrest requires mechanisms preventing the destruction of the maturation promoting factor (MPF) and the migration of the chromosomes. In frog oocytes, arrest in metaphase II (M II) is achieved by cytostatic factor (CSF) that stabilizes MPF, a heterodimer formed of cdc2 kinase and cyclin. At the metaphase/anaphase transition, a rapid proteolysis of cyclin is associated with MPF inactivation. In Drosophila, oocytes are arrested in metaphase I (M I); however, only mechanical forces generated by the chiasmata seem to prevent chromosome separation. Thus, entirely different mechanisms may be involved in the meiotic arrests in various species. We report here that in mouse oocytes a CSF-like activity is involved in the M II arrest (as observed in hybrids composed of fragments of metaphase II-arrested oocytes and activated mitotic mouse oocytes) and that the high activity of MPF is maintained through a continuous equilibrium between cyclin B synthesis and degradation. In addition, the presence of an intact metaphase spindle is required for cyclin B degradation. Finally, MPF activity is preferentially associated with the spindle after bisection of the oocyte. Taken together, these observations suggest that the mechanism maintaining the metaphase arrest in mouse oocytes involves an equilibrium between cyclin synthesis and degradation, probably controlled by CSF, and which is also dependent upon the three-dimensional organization of the spindle.  相似文献   

16.
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases, was shown to block germinal vesicle (GV) breakdown (GVBD) in bovine oocytes in a concentration-dependent manner; GVBD was almost totally inhibited over the course of 24-48 h of culture when 100 microM BL I was included in tissue culture medium 199 containing either polyvinyl alcohol or BSA. Correlated with this inhibition was the failure of either p34(cdc2) kinase or mitogen-activated protein (MAP) kinase to become activated, and it was unlikely that BL I directly inhibited MAP kinase, since 100 microM BL I did not inhibit MAP kinase activity present in extracts obtained from metaphase II-arrested bovine eggs that possess high levels of MAP kinase activity. Nevertheless, the formation of highly condensed bivalents was observed in 78% of the BL I-treated GV-intact oocytes. This result suggests that chromosome condensation during first meiosis in bovine oocytes does not require the activity of either p34(cdc2) kinase or MAP kinase. Treatment of BL I-arrested oocytes with okadaic acid (OA) did not result in either the activation of p34(cdc2) kinase or MAP kinase, or inducement of GVBD. The BL I-induced block of GVBD for 24 h was reversible, and a subsequent 24-h culture resulted in 90% of oocytes reaching metaphase II with emission of the first polar body. Correlated with the progression to and arrest at metaphase II was the full activation of both p34(cdc2) and MAP kinases. The reversibility after 48 h of culture in BL I was partially decreased when compared to that achieved after an initial 24-h culture. Fertilization in vitro of these eggs resulted in a high incidence of both sperm penetration and pronucleus formation (88% and 70%, respectively).  相似文献   

17.
Cross-linking of the immunoglobulin E receptor on rat basophilic leukemia (RBL)1 cells by multivalent antigen activates phosphatidylinositol (PI) kinase and phosphatidylinositol 4-phosphate (PIP) kinase leading to the increased production of PIP and phosphatidylinositol 4,5-bisphosphate (PIP2). Activators of protein kinase C (PKC), such as phorbol myristate acetate (PMA) and the synthetic diacylglycerol, 1,2-dioctanoyl-sn-glycerol (diC8), were found to have the same effect even though PMA and diC8 do not cause the activation of phospholipase C. Although the kinetics are different depending on the stimulant, activation of PKC using multivalent antigen, PMA or diC8 also causes the polymerization of actin and an increase in the F-actin content of the cells. In all cases, a good correlation was observed between F-actin levels, activation of PI and PIP kinases, and the increased production of PIP and PIP2. However, in the case of antigen, there is no correlation between actin polymerization and the total amount of PIP and PIP2. Staurosporine, an inhibitor of protein kinases, blocks the F-actin response and the increased synthesis of PIP and PIP2 with similar dose dependencies. Furthermore, depletion of PKC activity through long-term exposure to PMA, inhibited both the F-actin response and the increased synthesis of PIP and PIP2 induced by either DNP-BSA or diC8. These results suggest that activation of PKC precedes the activation of PI and PIP kinases and that under certain circumstances activation of the kinases and the increased synthesis of PIP and PIP2 may be involved in the polymerization of actin in RBL cells, possibly through the interaction of the polyphosphoinositides with actin-binding proteins such as gelsolin and profilin.  相似文献   

18.
During and after insulin-induced hypoglycemia, changes in levels of cerebral phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidic acid (PA), triacylglycerol (TAG), diacylglycerol (DAG), and free fatty acids (FFAs) as well as the cerebral energy state were studied in relation to the EEG. In hypoglycemic rats with an EEG pattern of quasiperiodic sharp or slow sharp waves, which preceded the development of an isoelectric EEG, PIP2 levels increased significantly, together with a slight decrease in PI content. Levels of the other lipids did not change during this period. The cerebral energy state was affected only slightly in spite of profound decreases in plasma and tissue glucose levels. With 30 min of an isoelectric EEG, levels of all phosphoinositides and PA decreased significantly; total FFA and DAG contents increased seven- and twofold, respectively; the TAG-palmitate level decreased, and that of TAG-arachidonate increased. Plasma and tissue glucose were nearly depleted, and the cerebral energy state deteriorated severely. The increment in fatty acids in the DAG and FFA pools was less than their loss from phosphoinositides and PA, an observation suggesting vascular washout or oxidation of a portion of the FFAs produced. Following 90 min of glucose infusion, PIP and PA levels recovered to control values; however, the PIP2 content exceeded control levels, and that of PI remained below control levels. DAG and FFA contents returned to normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Activities of three kinases, phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and diacylglycerol (DG) kinases, and phospholipase C were measured in erythrocyte ghosts from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). PI kinase activity was significantly higher in SHR than WKY but there was no significant difference in PIP kinase activity between SHR and WKY. The activity of phospholipase C, which hydrolyzes PIP2, was also increased in SHR. However, DG kinase activity was, on the contrary, decreased in SHR. These results suggest that there is a tendency to accumulate DG in SHR. Indeed, DG content in erythrocytes of SHR increased 1.7-fold compared to that of WKY. Such DG accumulation may cause the sustained activation of protein kinase C in SHR, since DG is a physiological activator for protein kinase C.  相似文献   

20.
S Faure  S Vigneron  M Dorée    N Morin 《The EMBO journal》1997,16(18):5550-5561
We have identified new members (X-PAKs) of the Ste20/PAK family of protein kinases in Xenopus, and investigated their role in the process that maintains oocytes arrested in the cell cycle. Microinjection of a catalytically inactive mutant of X-PAK1 with a K/R substitution in the ATP binding site, also deleted of its Nter-half that contains the conserved domains responsible for binding of both Cdc42/Rac GTPases and SH3-containing proteins, greatly facilitates oocyte release from G2/prophase arrest by progesterone and insulin. Addition of the same X-PAK1 mutant to cell cycle extracts from unfertilized eggs induced apoptosis, as shown by activation of caspases and cytological changes in in vitro-assembled nuclei. This was suppressed by adding Bcl-2 or the DEVD peptide inhibitor of caspases, and rescued by competing the dominant-negative mutant with its constitutively active X-PAK1 counterpart. Such results indicate that X-PAK1 (or another member of the Xenopus Ste20/PAK family of protein kinases) is involved in arrest of oocytes at G2/prophase and prevention of apoptosis; thus death by apoptosis and release of healthy oocytes from cell cycle arrest may be linked. That cell cycle arrest protects oocytes from apoptosis is consistent with the finding that extracts from metaphase II-arrested oocytes are less sensitive to apoptotic signals than those from activated eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号