共查询到20条相似文献,搜索用时 15 毫秒
1.
水杨酸(SA)是植物重要的信号分子,低浓度的SA能够诱导植物的抗病反应,而高浓度的SA导致植物细胞死亡。本文采用500μmol·L-1的SA处理烟草悬浮细胞BY-2,研究了细胞外ATP在SA诱导的细胞死亡中的作用及可能的机制。结果显示,外源ATP可缓解SA诱导的细胞死亡水平的上升。另外,SA导致NADPH氧化酶活性下降,而外源ATP则刺激其活性上升。外源ATP能缓解SA对NADPH氧化酶活性的抑制,且这种缓解作用可被NADPH氧化酶的抑制剂——二亚苯基碘(DPI)所消除。DPI还可部分消除外源ATP对SA所诱导的细胞死亡的缓解作用。上述结果表明,胞外ATP通过刺激NADPH氧化酶活性缓解SA诱导的细胞死亡。 相似文献
2.
研究了细胞外ATP(eATP)和水杨酸(SA)对烟草(Nicotiana tabacum)叶片的气孔导度(GH2 O)、蒸腾速率(E)、光合作用速率(A)与叶绿素荧光参数[包括PSⅡ潜在最大光化学量子效率(Fv/Fm)、PSⅡ光适应下实际光化学效率Y(Ⅱ)、电子传递速率(ETR)、非光化学荧光淬灭(NPQ)和光化学荧光淬灭(qP)]的影响。结果表明:SA能导致A、GH2 O和E的下降,而eATP的处理能缓解SA造成的A、GH2 O和E的下降;但SA未对叶绿素荧光参数Fv/Fm、Y(Ⅱ)、NPQ、qP和ETR造成显著影响,eATP的加入也未改变SA处理下叶片叶绿素荧光参数的水平。这说明SA能导致光合作用的抑制,而eATP能明显缓解SA对光合作用的抑制,但以上作用可能均和光反应阶段无关。并对其内在机理进行了探讨。 相似文献
3.
DONGWON BAEK PRASANTH PATHANGE JUNG‐SUNG CHUNG JIAFU JIANG LIQIONG GAO AKIRA OIKAWA MASAMI YOKOTA HIRAI KAZUKI SAITO PAUL W. PARE HUAZHONG SHI 《Plant, cell & environment》2010,33(8):1383-1392
Sulphonation of small molecules by cytosolic sulphotransferases in mammals is an important process in which endogenous molecules are modified for inactivation/activation of their biological effects. Plants possess large numbers of sulphotransferase genes, but their biological functions are largely unknown. Here, we present a functional analysis of the Arabidopsis sulphotransferase AtSOT12 (At2g03760). AtSOT12 gene expression is strongly induced by salt, and osmotic stress and hormone treatments. The T‐DNA knock‐out mutant sot12 exhibited hypersensitivity to NaCl and ABA in seed germination, and to salicylic acid (SA) in seedling growth. In vitro enzyme activity assay revealed that AtSOT12 sulphonates SA, and endogenous SA levels suggested that sulphonation of SA positively regulates SA production. Upon challenging with the pathogen Pseudomonas syringae, sot12 mutant and AtSOT12 over‐expressing lines accumulate less and more SA, respectively, when compared with wild type. Consistent with the changes in SA levels, the sot12 mutant was more susceptible, while AtSOT12 over‐expressing plants are more resistant to pathogen infection. Moreover, pathogen‐induced PR gene expression in systemic leaves was significantly enhanced in AtSOT12 over‐expressing plants. The role of sulphonation of SA in SA production, mobile signalling and acquired systemic resistance is discussed. 相似文献
4.
Hu G deHart AK Li Y Ustach C Handley V Navarre R Hwang CF Aegerter BJ Williamson VM Baker B 《The Plant journal : for cell and molecular biology》2005,42(3):376-391
In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1. 相似文献
5.
Although it is well known that the pyridine nucleotides NAD and NADP function inside the cell to regulate intracellular signaling processes, recent evidence from animal studies suggests that NAD(P) also functions in the extracellular compartment (ECC). Extracellular NAD(P) [eNAD(P)] can either directly bind to plasma membrane receptors or be metabolized by ecto-enzymes to produce cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, and/or may ADP-ribosylate cell-surface receptors, resulting in activation of transmembrane signaling. In this study, we report that, in plants, exogenous NAD(P) induces the expression of pathogenesis-related ( PR ) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Chelation of Ca2+ by EGTA significantly inhibits the induction of PR genes by exogenous NAD(P), suggesting that exogenous NAD(P) may induce PR genes through a pathway that involves Ca2+ signaling. We show that exogenous application of NAD(P) causes accumulation of the defense signal molecule salicylic acid (SA), and induces both SA/NPR1-dependent and -independent PR gene expression and disease resistance. Furthermore, we demonstrate that NAD(P) leaks into the plant ECC after mechanical wounding and pathogen infection, and that the amount of NAD(P) leaking into the ECC after P. syringae pv. tobacco DC3000/ avrRpt2 infection is sufficient for induction of both PR gene expression and disease resistance. We propose that NAD(P) leakage from cells losing membrane integrity upon environmental stress may function as an elicitor to activate plant defense responses. Our data provide evidence that eNAD(P) functions in plant signaling, and illustrate the potential importance of eNAD(P) in plant innate immunity. 相似文献
6.
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility. 相似文献
7.
《Bioscience, biotechnology, and biochemistry》2013,77(12):2301-2306
A 3,6-di-O-benzylated demethylallosamizoline derivative was glycosylated at the 4-position with an N, N′-diphthaloylchitobiosyl moiety by using the thioglycoside method. After de-protections, the resulting demethylallosamidin-like pseudotrisaccharide was evaluated as an inhibitor against a couple of chitinases. 相似文献
8.
Syeda T. Alam Sujon Sarowar Hossain A. Mondal Ragiba Makandar Zulkarnain Chowdhury Joe Louis Jyoti Shah 《Molecular Plant Pathology》2022,23(8):1141
Fusarium graminearum (Fg) is an important fungal pathogen of small grain cereals that can also infect Arabidopsis thaliana. In Arabidopsis, jasmonic acid (JA) signalling involving JASMONATE RESISTANT 1 (JAR1), which synthesizes JA‐isoleucine, a signalling form of JA, promotes susceptibility to Fg. Here we show that Arabidopsis MYZUS PERSICAE‐INDUCED LIPASE 1 (MPL1), via its influence on limiting JA accumulation, restricts Fg infection. MPL1 expression was up‐regulated in response to Fg infection, and MPL1‐OE plants, which overexpress MPL1, exhibited enhanced resistance against Fg. In comparison, disease severity was higher on the mpl1 mutant than the wild type. JA content was lower in MPL1‐OE and higher in mpl1 than in the wild type, indicating that MPL1 limits JA accumulation. Pharmacological experiments confirmed the importance of MPL1‐determined restriction of JA accumulation on curtailment of Fg infection. Methyl‐JA application attenuated the MPL1‐OE‐conferred resistance, while the JA biosynthesis inhibitor ibuprofen enhanced resistance in mpl1. Also, the JA biosynthesis‐defective opr3 mutant was epistatic to mpl1, resulting in enhanced resistance in mpl1 opr3 plants. In comparison, JAR1 was not essential for the mpl1‐conferred susceptibility to Fg. Considering that methyl‐JA promotes Fg growth in culture, we suggest that in part MPL1 curtails disease by limiting the availability of a plant‐derived Fg growth‐promoting factor. 相似文献
9.
10.
Syeda T. Alam Sujon Sarowar Hossain A. Mondal Ragiba Makandar Zulkarnain Chowdhury Joe Louis Jyoti Shah 《Molecular Plant Pathology》2022,23(8):1141-1153
Fusarium graminearum (Fg) is an important fungal pathogen of small grain cereals that can also infect Arabidopsis thaliana. In Arabidopsis, jasmonic acid (JA) signalling involving JASMONATE RESISTANT 1 (JAR1), which synthesizes JA-isoleucine, a signalling form of JA, promotes susceptibility to Fg. Here we show that Arabidopsis MYZUS PERSICAE-INDUCED LIPASE 1 (MPL1), via its influence on limiting JA accumulation, restricts Fg infection. MPL1 expression was up-regulated in response to Fg infection, and MPL1-OE plants, which overexpress MPL1, exhibited enhanced resistance against Fg. In comparison, disease severity was higher on the mpl1 mutant than the wild type. JA content was lower in MPL1-OE and higher in mpl1 than in the wild type, indicating that MPL1 limits JA accumulation. Pharmacological experiments confirmed the importance of MPL1-determined restriction of JA accumulation on curtailment of Fg infection. Methyl-JA application attenuated the MPL1-OE-conferred resistance, while the JA biosynthesis inhibitor ibuprofen enhanced resistance in mpl1. Also, the JA biosynthesis-defective opr3 mutant was epistatic to mpl1, resulting in enhanced resistance in mpl1 opr3 plants. In comparison, JAR1 was not essential for the mpl1-conferred susceptibility to Fg. Considering that methyl-JA promotes Fg growth in culture, we suggest that in part MPL1 curtails disease by limiting the availability of a plant-derived Fg growth-promoting factor. 相似文献
11.
SCOTT UKNES BERNARD VERNOOIJ SHERICCA MORRIS DANIELLE CHANDLER HENRY-YORK STEINER NICOLE SPECKER MICHELLE HUNT URS NEUENSCHWANDER KAY LAWTON MARK STARRETT LESLIE FRIEDRICH KRIS WEYMANN DAVID NEGROTTO JÖRN GÖRLACH MIKE LANAHAN JOHN SALMERON ERIC WARD HELMUT KESSMANN JOHN RYALS 《The New phytologist》1996,133(1):3-10
12.
13.
14.
15.
The ACCELERATED CELL DEATH 6 (ACD6) protein, composed of an ankyrin-repeat domain and a predicted transmembrane region, is a necessary positive regulator of Arabidopsis defenses. ACD6 overexpression confers enhanced disease resistance by priming stronger and quicker defense responses during pathogen infection, plant development or treatment with an agonist of the key defense regulator salicylic acid (SA). Modulation of ACD6 affects both SA-dependent and SA-independent defenses. ACD6 localizes to the plasma membrane and is an integral membrane protein with a cytoplasmic ankyrin domain. An activated version of ACD6 with a predicted transmembrane helix mutation called ACD6-1 has the same localization and overall topology as the wild-type protein. A genetic screen for mutants that suppress acd6-1-conferred phenotypes identified 17 intragenic mutations of ACD6. The majority of these mutations reside in the ankyrin domain and in predicted transmembrane helices, suggesting that both ankyrin and transmembrane domains are important for ACD6 function. One mutation (S638F) also identified a key residue in a putative loop between two transmembrane helices. This mutation did not alter the stability or localization of ACD6, suggesting that S635 is a critical residue for ACD6 function. Based on structural modeling, two ankyrin domain mutations are predicted to be in surface-accessible residues. As ankyrin repeats are protein interaction modules, these mutations may disrupt protein-protein interactions. A plausible scenario is that information exchange between the ankyrin and transmembrane domains is involved in activating defense signaling. 相似文献
16.
17.
Igari K Endo S Hibara K Aida M Sakakibara H Kawasaki T Tasaka M 《The Plant journal : for cell and molecular biology》2008,55(1):14-27
Possible links between plant defense responses and morphogenesis have been postulated, but their molecular nature remains unknown. Here, we introduce the Arabidopsis semi-dominant mutant uni-1D with morphological defects. UNI encodes a coiled-coil nucleotide-binding leucine-rich-repeat protein that belongs to the disease resistance (R) protein family involved in pathogen recognition. The uni-1D mutation causes the constitutive activation of the protein, which is stabilized by the RAR1 function in a similar way as in other R proteins. The uni-1D mutation induces the upregulation of the Pathogenesis-related gene via the accumulation of salicylic acid, and evokes some of the morphological defects through the accumulation of cytokinin. The rin4 knock-down mutation, which causes the constitutive activation of two R proteins, RPS2 and RPM1, induces an upregulation of cytokinin-responsive genes and morphological defects similar to the uni-1D mutation, indicating that the constitutive activation of some R proteins alters morphogenesis through the cytokinin pathway. From these data, we propose that the modification of the cytokinin pathway might be involved in some R protein-mediated responses. 相似文献
18.
19.
Plant activators are agrochemicals that protect plants from a broad range of pathogens by activating the plant immune system. Unlike pesticides, they do not target pathogens; therefore, plant activators provide durable effects that are not overcome by pathogenic microbes. Although certain plant activators have been applied to paddy fields for more than 30 years, the molecular basis of the underlying immune induction are unclear. From the screening of 10,000 diverse chemicals by a high-throughput screening procedure to identify compounds that specifically enhance pathogen-induced cell death in Arabidopsis cultured cells, we identified 7 compounds, which we designated as immune priming chemicals (Imprimatins). These compounds increased disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous salicylic acid (SA) but reduced its metabolite, SA-O-β-D-glucoside (SAG). Imprimatins inhibited the enzymatic activities of 2 SA glucosyltransferases (SAGTs) in vitro at concentrations effective for immune priming. Single and double knockout Arabidopsis plants for both SAGTs consistently exhibited enhanced disease resistance and SA accumulation. Our results demonstrate that the control of the free SA pool through SA-inactivating enzymes can be a useful methodology to confer disease resistance in plants. SAGTs can pave the way for target-based discovery of novel crop protectants. 相似文献
20.
Xiong Liu Yan Yu Wei Yao Zhongliang Yin Yubo Wang Zijian Huang Jie-Qiang Zhou Jinling Liu Xuedan Lu Feng Wang Guilian Zhang Guihua Chen Yunhua Xiao Huabing Deng Wenbang Tang 《Plant biotechnology journal》2023,21(9):1873-1886
Salicylic acid (SA) is an essential plant hormone that plays critical roles in basal defence and amplification of local immune responses and establishes resistance against various pathogens. However, the comprehensive knowledge of the salicylic acid 5-hydroxylase (S5H) in rice-pathogen interaction is still elusive. Here, we reported that three OsS5H homologues displayed salicylic acid 5-hydroxylase activity, converting SA into 2,5-dihydroxybenzoic acid (2,5-DHBA). OsS5H1, OsS5H2, and OsS5H3 were preferentially expressed in rice leaves at heading stage and responded quickly to exogenous SA treatment. We found that bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) strongly induced the expression of OsS5H1, OsS5H2, and OsS5H3. Rice plants overexpressing OsS5H1, OsS5H2, and OsS5H3 showed significantly decreased SA contents and increased 2,5-DHBA levels, and were more susceptible to bacterial blight and rice blast. A simple single guide RNA (sgRNA) was designed to create oss5h1oss5h2oss5h3 triple mutants through CRISPR/Cas9-mediated gene mutagenesis. The oss5h1oss5h2oss5h3 exhibited stronger resistance to Xoo than single oss5h mutants. And oss5h1oss5h2oss5h3 plants displayed enhanced rice blast resistance. The conferred pathogen resistance in oss5h1oss5h2oss5h3 was attributed to the significantly upregulation of OsWRKY45 and pathogenesis-related (PR) genes. Besides, flg22-induced reactive oxygen species (ROS) burst was enhanced in oss5h1oss5h2oss5h3. Collectively, our study provides a fast and effective approach to generate rice varieties with broad-spectrum disease resistance through OsS5H gene editing. 相似文献