首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
beta-1,4-Galactosyltransferase 1 (Gal-T1) transfers galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc), which constitutes its normal galactosyltransferase (Gal-T) activity. In the presence of alpha-lactalbumin (LA), it transfers Gal to Glc, which is its lactose synthase (LS) activity. It also transfers glucose (Glc) from UDP-Glc to GlcNAc, constituting the glucosyltransferase (Glc-T) activity, albeit at an efficiency of only 0.3-0.4% of Gal-T activity. In the present study, we show that LA increases this activity almost 30-fold. It also enhances the Glc-T activity toward various N-acyl substituted glucosamine acceptors. Steady state kinetic studies of Glc-T reaction show that the K(m) for the donor and acceptor substrates are high in the absence of LA. In the presence of LA, the K(m) for the acceptor substrate is reduced 30-fold, whereas for UDP-Glc it is reduced only 5-fold. In order to understand this property, we have determined the crystal structures of the Gal-T1.LA complex with UDP-Glc x Mn(2+) and with N-butanoyl-glucosamine (N-butanoyl-GlcN), a preferred sugar acceptor in the Glc-T activity. The crystal structures reveal that although the binding of UDP-Glc is quite similar to UDP-Gal, there are few significant differences observed in the hydrogen bonding interactions between UDP-Glc and Gal-T1. Based on the present kinetic and crystal structural studies, a possible explanation for the role of LA in the Glc-T activity has been proposed.  相似文献   

2.
Beta-1,4-galactosyltransferase I (beta4Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion (Gal-T activity) and also transfers Glc from UDP-Glc to GlcNAc (Glc-T activity), albeit at only 0.3% efficiency. In addition, alpha-lactalbumin (LA) enhances this Glc-T activity more than 25 times. Comparison of the crystal structures of UDP-Gal- and UDP-Glc-bound beta4Gal-T1 reveals that the O4 hydroxyl group in both Gal and Glc moieties forms a hydrogen bond with the side chain carboxylate group of Glu317. The orientation of the O4 hydroxyl of glucose causes a steric hindrance to the side chain carboxylate group of Glu317, accounting for the enzyme's low Glc-T activity. In this study, we show that mutation of Arg228, a residue in the vicinity of Glu317, to lysine (R228K-Gal-T1) results in a 15-fold higher Glc-T activity, which is further enhanced by LA to nearly 25% of the Gal-T activity of the wild type. The kinetic parameters indicate that the main effect of the mutation of Arg228 to lysine is on the k(cat) of Glc-T, which increases 3-4-fold, both in the absence and in the presence of LA; simultaneously, the k(cat) for the Gal-T reaction is reduced 30-fold. The crystal structure of R228K-Gal-T1 complexed with LA, UDP-Gal, and Mn(2+) determined at 1.9 A resolution shows that the Asp318 side chain exhibits a minor alternate conformation, compared to that in the wild type. This alternate conformation now causes a steric hindrance to the O4 hydroxyl group of the Gal moiety of UDP-Gal, probably causing the dissociation of UDP-Gal and the reduced k(cat) of the Gal-T reaction.  相似文献   

3.
4.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

5.
UDP-GlcNAc:Gal beta 1-3GalNAc-R beta 1,6-N-acetylglucosaminyltransferase (GlcNAc to GalNAc) (i.e., core 2 GlcNAc-T) is a developmentally regulated enzyme of the O-linked oligosaccharide biosynthesis pathway. We have developed a coupled-enzyme assay for core 2 GlcNAc-T that is approximately 100 times more sensitive than the standard assay using UDP-[3H]GlcNAc as a sugar donor. Core 2 GlcNAc-T reactions were performed using unlabeled UDP-GlcNAc donor and Gal beta 1-3GalNAc alpha-paranitrophenyl (pNp) as acceptor. The product, Gal beta 1-3(GlcNAc beta 1-6)GalNAc alpha-pNp was then further reacted with purified bovine beta 1-4Gal-T and UDP-[3H]Gal to produce Gal beta 1-3([3H]Gal beta 1-4GlcNAc beta 1-6) GalNAc alpha-pNp, which was separated on an Ultrahydrogel HPLC column. Approximately 10% of the available GlcNAc-terminating acceptor was substituted in the Gal-T reaction, allowing 1 pmol of product to be readily detected. The increased sensitivity of the coupled assay should facilitate studies of core 2 GlcNAc-T activity where material is limiting or specific activity is low.  相似文献   

6.
A UDP-GlcNAc:R1-beta 1-3Gal(NAc)-R2 [GlcNAc to Gal(NAc)] beta 6-N-acetylglucosaminyltransferase activity from pig gastric mucosa microsomes catalyzes the formation of GlcNAc beta 1-3(GlcNAc beta 1-6)Gal-R from GlcNAc beta 1-3Gal-R where -R is -beta 1-3GalNAc-alpha-benzyl or -beta 1-3(GlcNAc beta 1-6)GalNAc-alpha-benzyl. This enzyme is therefore involved in the synthesis of the I antigenic determinant in mucin-type oligosaccharides. The enzyme also converts Gal beta 1-3Gal beta 1-4Glc to Gal beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc. The enzyme was stimulated by Triton X-100 at concentrations between 0 and 0.2% and was inhibited by Triton X-100 at 0.5%. There is no requirement for Mn2+ and the enzyme activity is reduced to 65% in the presence of 10 mM EDTA. Enzyme products were purified and identified by proton NMR, methylation analysis and beta-galactosidase digestion. Competition studies suggest that this pig gastric mucosal beta 6-GlcNAc-transferase activity is due to the same enzyme that converts Gal beta 1-3GalNAc-R to mucin core 2, Gal beta 1-3(GlcNAc beta 1-6)GalNAc-R, and GlcNAc beta 1-3GalNAc-R to mucin core 4, GlcNAc beta 1-3(GlcNAc beta 1-6)GalNAc-R. Substrate specificity studies indicate that the enzyme attaches GlcNAc to either Gal or GalNAc in beta (1-6) linkage, provided these residues are substituted in beta (1-3) linkage by either GlcNAc or Gal. The insertion of a GlcNAc beta 1-3 residue into Gal beta 1-3GalNAc-R to form GlcNAc beta 1-3Gal beta 1-3GalNAc-R prevents insertion of GlcNAc into GalNAc. These studies establish several novel pathways in mucin-type oligosaccharide biosynthesis.  相似文献   

7.
Guo H  Li L  Wang PG 《Biochemistry》2006,45(46):13760-13768
The O-antigen of lipopolysaccharide in Gram-negative bacteria plays an important role in bacterium-host interactions. Escherichia coli O86:B7 O-unit contains five sugar residues: one fucose (Fuc) and two each of N-acetylgalactosamine (GalNAc) and galactose (Gal). The entire O-antigen gene cluster was previously sequenced: orf1 was assigned the gne gene for the biosynthesis of UDP-GalNAc. To confirm this annotation, overexpression, purification, and biochemical characterization of Gne were performed. By using capillary electrophoresis, we showed that Gne can catalyze the interconversion of both UDP-GlcNAc/GalNAc and UDP-Glc/Gal almost equally well. The Km values of Gne for UDP-Glc, UDP-Gal, UDP-GlcNAc, and UDP-GalNAc are 370, 295, 323, and 373 microM, respectively. The comparison of kinetic parameters of Gne from Escherichia coli O86:B7 to those of other characterized UDP-GlcNAc/Glc 4-epimerases indicated that it has relaxed specificity toward the four substrates, the first characterized enzyme to have this activity in the O-antigen biosynthesis. Moreover, the calculated kcat/Km values for UDP-GalNAc and UDP-Gal are approximately 2-4 times higher than those for UDP-GlcNAc and UDP-Glc, suggesting that Gne is slightly more efficient for the epimerization of UDP-GalNAc and UDP-Gal. One mutation (S306Y) resulted in a loss of epimerase activity for non-acetylated substrates by about 5-fold but totally abolished the activity for N-acetylated substrates, indicating that residue S306 plays an important role in the determination of substrate specificity.  相似文献   

8.
The serine/threonine O-linked carbohydrates GalNAc alpha and Gal beta 1-3GalNAc alpha, referred to as Tn and T antigens, respectively, appear to be more prevalent in some human carcinomas than in surrounding tissues. Tn/T antigens may represent incomplete synthesis of O-linked oligosaccharides, due to decreased activity of specific glycosyltransferases, or alternatively, increased glycosidases activity in tumors which may expose these internal O-linked oligosaccharide sequences. To explore these possibilities, we measured UDP-Gal:GalNAc alpha-R beta 1-3 galactosyltransferase (beta 3Gal-T) and Gal beta 1-3GalNAc alpha-R beta 1-3 galactosidase in a series of human breast tumors. In addition, glycoproteins extracted from the tumors were separated by SDS-PAGE and stained with the lectins HPA (GalNAc alpha-R reactive) and PNA (Gal beta-3GalNAc alpha-R reactive). The relative levels of HPA- to PNA-reactive glycoproteins in the carcinomas correlated inversely with beta 3Gal-T activities. The results suggest that Tn antigen expression in human breast carcinoma is due in part to low beta 3Gal-T activity, a situation similar to that observed previously in haematopoietic cells of individuals with a condition called Tn syndrome.  相似文献   

9.
The mutant beta1,4-galactosyltransferase (beta4Gal-T1), beta4Gal-T1-Y289L, in contrast to wild-type beta4Gal-T1, can transfer GalNAc from the sugar donor UDP-GalNAc to the acceptor, GlcNAc, with efficiency as good as that of galactose from UDP-Gal. Furthermore, the mutant can also transfer a modified sugar, C2 keto galactose, from its UDP derivative to O-GlcNAc modification on proteins that provided a functional handle for developing a highly sensitive chemoenzymatic method for detecting O-GlcNAc post-translational modification on proteins. We report herein that the modified sugar, C2 keto galactose, can be transferred to free GlcNAc residues on N-linked glycoproteins, such as ovalbumin or asialo-agalacto IgG1. The transfer is strictly dependent on the presence of both the mutant enzyme and the ketone derivative of the galactose. Moreover, the PNGase F treatment of the glycoproteins, which cleaves the N-linked oligosaccharide chain, shows that the modified sugar has been transferred to the N-glycan chains of the glycoproteins and not to the protein portion. The application of the mutant galactosyltransferase, beta4Gal-T1-Y289L, to produce glycoconjugates carrying sugar moieties with reactive groups, is demonstrated. We envision a broad potential for this technology such as the possibilities to link cargo molecules to glycoproteins, such as monoclonal antibodies, via glycan chains, thereby assisting in the glycotargeting of drugs to the site of action or used as biological probes.  相似文献   

10.
Connective tissue of the freshwater pulmonate Lymnaea stagnalis was shown to contain galactosyltransferase activity capable of transferring Gal from UDP-Gal in beta 1-3 linkage to terminal GalNAc of GalNAc beta 1-4GlcNAc-R [R = beta 1-2Man alpha 1-O(CH2)8COOMe, beta 1-OMe, or alpha,beta 1-OH]. Using GalNAc beta 1-4GlcNAc beta 1-2Man alpha-1-O(CH2)8COOMe as substrate, the enzyme showed an absolute requirement for Mn2+ with an optimum Mn2+ concentration between 12.5 mM and 25 mM. The divalent cations Mg2+, Ca2+, Ba2+ and Cd2+ at 12.5 mM could not substitute for Mn2+. The galactosyltransferase activity was independent of the concentration of Triton X-100, and no activation effect was found. The enzyme was active with GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe (Vmax 140 nmol.h-1.mg protein-1; Km 1.02 mM), GalNAc beta 1-4GlcNAc (Vmax 105 nmol.h-1.mg protein-1; Km 0.99 mM), and GalNAc beta 1-4GlcNAc beta 1-OMe (Vmax 108 nmol.h-1.mg protein-1; Km 1.33 mM). The products formed from GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe and GalNAc beta 1-4GlcNAc beta 1-OMe were purified by high performance liquid chromatography, and identified by 500-MHz 1H-NMR spectroscopy to be Gal beta 1-3GalNAc beta 1-4GlcNAc 1-OMe, respectively. The enzyme was inactive towards GlcNAc, GalNac beta 1-3 GalNAc alpha 1-OC6H5, GalNAc alpha 1--ovine-submaxillary-mucin, lactose and N-acetyllactosamine. This novel UDP-Gal:GalNAc beta 1-4GlcNAc-R beta 1-3-galactosyltransferase is believed to be involved in the biosynthesis of the hemocyanin glycans of L. stagnalis.  相似文献   

11.
During the catalytic cycle of beta1,4-galactosyltransferase-1 (Gal-T1), upon the binding of Mn(2+) followed by UDP-Gal, two flexible loops, a long and a short loop, change their conformation from open to closed. We have determined the crystal structures of a human M340H-Gal-T1 mutant in the open conformation (apo-enzyme), its Mn(2+) and Mn(2+)-UDP-Gal-bound complexes, and of a pentenary complex of bovine Gal-T1-Mn(2+)-UDP-GalNAc-Glc-alpha-lactalbumin. These studies show that during the conformational changes in Gal-T1, the coordination of Mn(2+) undergoes significant changes. It loses a coordination bond with a water molecule bound in the open conformation of Gal-T1 while forming a new coordination bond with another water molecule in the closed conformation, creating an active ground-state structure that facilitates enzyme catalysis. In the crystal structure of the pentenary complex, the N-acetylglucosamine (GlcNAc) moiety is found cleaved from UDP-GalNAc and is placed 2.7A away from the O4 oxygen atom of the acceptor Glc molecule, yet to form the product. The anomeric C1 atom of the cleaved GalNAc moiety has only two covalent bonds with its non-hydrogen atoms (O5 and C2 atoms), similar to either an oxocarbenium ion or N-acetylgalactal form, which are crystallographically indistinguishable at the present resolution. The structure also shows that the newly formed, metal-coordinating water molecule forms a hydrogen bond with the beta-phosphate group of the cleaved UDP moiety. This hydrogen bond formation results in the rotation of the beta-phosphate group of UDP away from the cleaved GalNAc moiety, thereby preventing the re-formation of the UDP-sugar during catalysis. Therefore, this water molecule plays an important role during catalysis in ensuring that the catalytic reaction proceeds in a forward direction.  相似文献   

12.
The kinetic basis of the donor substrate specificity of beta1, 4-N-acetylglucosaminyltransferase III (GnT-III) was investigated using a purified recombinant enzyme. The enzyme also transfers GalNAc and Glc moieties from their respective UDP-sugars to an acceptor at rates of 0.1-0.2% of that for GlcNAc, but Gal is not transferred at a detectable rate. Kinetic analyses revealed that these inefficient transfers, which are associated with the specificity of the enzyme, are due to the much lower V(max) values, whereas the K(m) values for UDP-GalNAc and UDP-Glc differ only slightly from that for UDP-GlcNAc. It was also found that various other nucleotide-Glc derivatives bind to the enzyme with comparable affinities to those of UDP-GlcNAc and UDP-Glc, although the derivatives do not serve as glycosyl donors. Thus, GnT-III does not appear to distinguish UDP-GlcNAc from other structurally similar nucleotide-sugars by specific binding in the ground state. These findings suggest that the specificity of GnT-III toward the nucleotide-sugar is determined during the catalytic process. This type of specificity may be efficient in preventing a possible mistransfer when other nucleotide-sugars are present in excess over the true donor.  相似文献   

13.
We previously reported that cultured cells incubated with beta-xylosides synthesized alpha-GalNAc-capped GAG-related xylosides, GalNAc alpha GlcA beta Gal beta Gal beta Xyl beta-R and GalNAc alpha GlcA beta GalNAc beta GlcA beta Gal beta Gal beta Xyl beta-R, where R is 4-methylumbelliferyl or p-nitrophenyl (Manzi et al., 1995; Miura and Freeze, 1998). In this study, we characterized an alpha-N-acetylgalactosaminyltransferase (alpha-GalNAc-T) that probably adds the alpha-GalNAc residue to the above xylosides. Microsomes from several animal cells and mouse brain contained the enzyme activity which requires divalent cations, and has a relatively broad pH optimal range around neutral. The apparent K(m) values were in the submillimolar range for the acceptors tested, and 19 microM for UDP-GalNAc. 1H-NMR analysis of the GlcA-beta-MU acceptor product showed the GalNAc residue is transferred in alpha 1,4-linkage to the glucuronide, which is consistent with previous results reported on alpha-GalNAc-capped Xyl-MU (Manzi et al., 1995). Various artificial glucuronides were tested as acceptors to assess the influence of the aglycone. Glucuronides with a bicyclic aromatic ring, such as 4-methylumbelliferyl beta-D-glucuronide (GlcA-beta-MU) and alpha-naphthyl beta-D-glucuronide, were the best acceptors. Interestingly, a synthetic acceptor that resembles the HNK-1 carbohydrate epitope but lacking the sulfate group, GlcA beta 1,3Gal beta 1,4GlcNAc beta-O-octyl (delta SHNK-C8), was a better acceptor for alpha-GalNAc-T than the glycosaminoglycan-protein linkage region tetrasaccharyl xyloside, GlcA beta 1,3Gal beta 1,3Gal beta 1,4Xyl beta-MU. GlcA-beta-MU and delta SHNK-C8 competed for the alpha-GalNAc-T activity, suggesting that the same activity catalyzes the transfer of the GalNAc residue to both acceptors. Taken together, the results show that the alpha-GalNAc-T described here is not restricted to GAG-type oligosaccharide acceptors, but rather is a UDP-GalNAc:glucuronide alpha 1-4-N-acetylgalactosaminyltransferase.  相似文献   

14.
GalNAc beta 1----3 terminated glycosphingolipids of human erythrocytes   总被引:4,自引:0,他引:4  
Nonacid glycosphingolipids with 4 to 10 sugar residues isolated from pooled erythrocytes of blood group O donors have been efficiently separated as peracetylated derivatives on silicic acid. This procedure enabled a quantitative estimate of individual compounds and also revealed several GalNAc beta 1----3 terminated structures. The structural characterization of these glycolipids with 1H-NMR spectroscopy, direct inlet mass spectrometry, gas chromatography, and gas chromatography-mass spectrometry identified the compounds as GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1-N-acetyl sphingosine and GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1-N-acetyl phytosphingosine, GalNAc beta 1----3GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1 ceramide, and GalNAc beta 1----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc beta 1----1 ceramide.  相似文献   

15.
16.
We have identified a novel N -acetylgalactosaminyltransferase activity in lactating bovine mammary gland membranes. Acceptor specificity studies and analysis of products obtained in vitro by 400 MHz1H-NMR spectroscopy revealed that the enzyme catalyses the transfer of N - acetylgalactosamine (GalNAc) from UDP-GalNAc to acceptor substrates carrying a terminal, beta-linked N -acetylglucosamine (GlcNAc) residue and establishes a beta1-->4-linkage forming a GalNAcbeta1-->4GlcNAc ( N, N '-diacetyllactosediamine, lacdiNAc) unit. Therefore, the enzyme can be identified as a UDP-GalNAc:GlcNAcbeta-R beta1-->4-N- acetylgalactosaminyltransferase (beta4-GalNAcT). This enzyme resembles invertebrate beta4-GalNAcT as well as mammalian beta4- galactosyltransferase (beta4-GalT) in acceptor specificity. It can, however, be clearly distinguished from the pituitary hormone-specific beta4-GalNAcT by its incapability of acting with an elevated activity on a glycoprotein substrate carrying a hormone-specific peptide motif. Furthermore, the GalNAcT activity appeared not to be due to a promiscuous action of a beta4-GalT as could be demonstrated by comparing the beta4-GalNAcT and beta4-GalT activities of the mammary gland, bovine colostrum, and purified beta4-GalT, by competition studies with UDP-GalNAc and UDP-Gal, and by use of an anti-beta4-GalT polyclonal inhibiting antibody. Interestingly, under conditions where mammalian beta4-GalT forms with alpha-lactalbumin (alpha-LA) the lactose synthase complex, the mammary gland beta4-GalNAcT was similarly induced by alpha-LA to act on Glc with an increased efficiency yielding the lactose analog GalNAcbeta1-->4Glc. This enzyme thus forms the second example of a mammalian glycosyltransferase the specificity of which can be modified by this milk protein. It is proposed that the mammary gland beta4-GalNAcT functions in the synthesis of lacdiNAc- based, complex-type glycans frequently occurring on bovine milk glycoproteins. The action of this enzyme is to be considered when aiming at the production of properly glycosylated protein biopharmaceuticals in the milk of transgenic dairy animals.   相似文献   

17.
Enzymatic alpha 2,3-sialylation of GalNAc has not been described previously, although some glycoconjugates containing alpha 2,3-sialylated GalNAc residues have been reported. In the present experiments, recombinant soluble alpha 2,3-sialyltransferase ST3Gal II efficiently sialylated the X(2) pentasaccharide GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, globo-N-tetraose GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and the disaccharide GalNAc beta 1-3Gal in vitro. The purified products were identified as Neu5Ac alpha 2-3GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, Neu5Ac alpha 2-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and Neu5Ac alpha 2-3GalNAc beta 1-3Gal, respectively, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, enzymatic degradations, and one- and two-dimensional NMR-spectroscopy. In particular, the presence of the Neu5Ac alpha 2-3GalNAc linkage was firmly established in all three products by a long range correlation between Neu5Ac C2 and GalNAc H3 in heteronuclear multiple bond correlation spectra. Collectively, the data describe the first successful sialyltransfer reactions to the 3-position of GalNAc in any acceptor. Previously, ST3Gal II has been shown to transfer to the Gal beta 1-3GalNAc determinant. Consequently, the present data show that the enzyme is multifunctional, and could be renamed ST3Gal(NAc) II. In contrast to ST3Gal II, ST3Gal III did not transfer to the X(2) pentasaccharide. The Neu5Ac alpha 2-3GalNAc linkage of sialyl X(2) was cleaved by sialidases from Arthrobacter ureafaciens and Clostridium perfringens, but resisted the action of sialidases from Newcastle disease virus and Streptococcus pneumoniae. Therefore, the latter two enzymes cannot be used to differentiate between Neu5Ac alpha 2-3GalNAc and Neu5Ac alpha 2-6GalNAc linkages, as has been assumed previously.  相似文献   

18.
The crystal structure of the catalytic domain of bovine beta1,4-galactosyltransferase (Gal-T1) co-crystallized with UDP-Gal and MnCl(2) has been solved at 2.8 A resolution. The structure not only identifies galactose, the donor sugar binding site in Gal-T1, but also reveals an oligosaccharide acceptor binding site. The galactose moiety of UDP-Gal is found deep inside the catalytic pocket, interacting with Asp252, Gly292, Gly315, Glu317 and Asp318 residues. Compared to the native crystal structure reported earlier, the present UDP-Gal bound structure exhibits a large conformational change in residues 345-365 and a change in the side-chain orientation of Trp314. Thus, the binding of UDP-Gal induces a conformational change in Gal-T1, which not only creates the acceptor binding pocket for N-acetylglucosamine (GlcNAc) but also establishes the binding site for an extended sugar acceptor. The presence of a binding site that accommodates an extended sugar offers an explanation for the observation that an oligosaccharide with GlcNAc at the non-reducing end serves as a better acceptor than the monosaccharide, GlcNAc. Modeling studies using oligosaccharide acceptors indicate that a pentasaccharide, such as N-glycans with GlcNAc at their non-reducing ends, fits the site best. A sequence comparison of the human Gal-T family members indicates that although the binding site for the GlcNAc residue is highly conserved, the site that binds the extended sugar exhibits large variations. This is an indication that different Gal-T family members prefer different types of glycan acceptors with GlcNAc at their non-reducing ends.  相似文献   

19.
Two trisaccharides, and a pentasaccharide were obtained from bovine colostrum. Their chemical structures were determined by using methylation and 13C-NMR analyses as follows: GalNac alpha 1-3Gal beta 1-4Glc, Gal alpha-1-3Gal beta 1-4Glc, GaL beta 1-3[Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4Glc. GalNAc alpha 1-3Gal beta 1-4Glc, which was identified in this study, is a novel oligosaccharide from natural sources. Gal alpha 1-3Gal beta 1-4Glc and Gal beta 1-3[Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4Glc (lacto-N-novopentaose) have been already found in ovine colostrum, and in horse colostrum and marsupial milk, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号