首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The routes followed by epidermal growth factor and transferrin during their endocytosis by human epithelial cells were compared in double-label studies by using density gradient centrifugation of cell homogenates and fluorescence microscopy with intact cells. Gradient centrifugation studies of cells incubated with radioactively labeled epidermal growth factor and transferrin indicated that both ligands initially were associated with a class of vesicles having a density of 1.037 g/mL and then were rapidly transferred to a membrane compartment having a slightly higher density (1.039 g/mL). Subsequently, the two ligands diverged. Epidermal growth factor ultimately was transferred to a membranous compartment containing lysosomal enzymes (density (1.08 g/mL) where it was degraded. Transferrin was released intact from the cells; very little was transferred to lysosomes. Using fluorescently labeled ligands, it was observed that after cells were warmed to 37 degrees C for 5 min, transferrin and epidermal growth factor gave coincident, punctate fluorescent patterns, strongly suggesting they were localized within the same endocytic vesicles. Subsequently, the epidermal growth factor signal was observed in lysosomes whereas the transferrin signal became weaker and diffuse and did not coincide with the punctate epidermal growth factor fluorescence. The time course of the divergence of the radioactive and fluorescent ligands coupled with the previous morphologic studies on the pathway of epidermal growth factor internalization [Willingham, M. C., & Pastan, I. (1982) J. Cell Biol. 94, 207-212] suggests that the sorting process is prelysosomal and possibly Golgi associated.  相似文献   

2.
Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein-Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways.  相似文献   

3.
A method is presented for the preparation of a "native" epidermal growth factor (EGF) receptor-kinase complex of molecular weight 170,000 from A-431 cells. Although this receptor complex is capable of binding EGF, noncovalently, in quantities similar to the previously isolated 150,000 complex (Cohen, S., Carpenter, G., and King, L., Jr. (1980) J. Biol. Chem. 255, 4834-4842), the 170,000 preparation has 5 to 10 times the intrinsic kinase activity (autophosphorylation). However, the 170,000 kinase activity toward other proteins is lower than that of the 150,000 preparation. Both the 170,000 and 150,000 kinase activities are enhanced by EGF. The 170,000 and 150,000 proteins are also capable of forming covalent linkages to 125I-EGF, and each is precipitated by antisera directed against the 170,000 protein. We suggest the 150,000 protein is a proteolytic degradation product of the 170,000 protein. The EGF-enhanced kinase activity of the 170,000 preparation remains associated with the 125I-EGF-binding activity following EGF affinity chromatography, electrophoresis in nondenaturing gels, or immunoprecipitation with antisera directed against the sodium dodecyl sulfate (SDS) gel-purified 170,000 protein. These results indicate that the receptor, kinase, and substrate domains are linked, possibly covalently.  相似文献   

4.
Using subcellular fractionation of human carcinoma A431 cells in Percoll gradient it was shown that P13-kinase (P13-K) inhibitor wortmannin blocked the transition of the EGF-receptor complexes from the early to the late endosomes. Under conditions when the receptor TK-dependent sorting system is mainly involved, i.e. at low EGF concentrations, the efficiency of sorting was seen to fall 5-10-folls in the presence of wortmannin compared to the control. At high EGF concentrations of the toxin inhibitory effect was no more than 30%. Immunofluorescent analysis has demonstrated that wortmannin treatment led to a juxtranuclear localization of EGF-receptors, which is presumably characteristic of the late endosomes. However, this localization became obvious even in 15 min following endocytosis stimulation, when EGF-receptors, according to the Percoll data, were associated mainly with the early endosomes. A possible role of phosphatidylinositol metabolism products in endocytosis regulation is discussed in addition to the structural and functional organization of the early endosomal compartments. A conclusion is made that P13-K may be a component of the EGF receptor-specific sorting system.  相似文献   

5.
Activation of the epidermal growth factor receptor (EGFR) triggers multiple signaling pathways and rapid endocytosis of the epidermal growth factor (EGF)-receptor complexes. To directly visualize the compartmentalization of molecules involved in the major signaling cascade, activation of Ras GTPase, we constructed fusions of Grb2, Shc, H-Ras, and K-Ras with enhanced cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP), and used live-cell fluorescence imaging microscopy combined with the fluorescence resonance energy transfer (FRET) technique. Stimulation of cells by EGF resulted in the accumulation of large pools of Grb2-CFP and YFP-Shc in endosomes, where these two adaptor proteins formed a complex with EGFR. H-Ras and K-Ras fusion proteins were found at the plasma membrane, particularly in ruffles and lamellipodia, and also in endosomes independently of GTP/GDP loading and EGF stimulation. The relative amount of endosomal H-Ras was higher than that of K-Ras, whereas K-Ras predominated at the plasma membrane. On application of EGF, Grb2, and Ras converge in the same endosomes through the fusion of endosomes containing either Grb2 or Ras or through the joint internalization of two proteins from the plasma membrane. To examine the localization of the GTP-bound form of Ras, we used a FRET assay that exploits the specific interaction of GTP-bound CFP-Ras with the YFP-fused Ras binding domain of c-Raf. FRET microscopy revealed that GTP-bound Ras is located at the plasma membrane, mainly in ruffles and at the cell edges, as well as in endosomes containing EGFR. These data point to the potential for endosomes to serve as sites of generation for persistent signaling through Ras.  相似文献   

6.
The binding, internalization, intracellular translocation, and degradation of epidermal growth factor (EGF) were studied in mouse Swiss/3T3 fibroblasts under two different physiological conditions at 37°C. In serum-containing medium the maximal level of cell-bound EGF was maintained for at least 8 h without appreciable degradation in contrast to serum-free conditions. These phenomena were correlated with a difference in the intracellular site to which the receptor-bound EGF was delivered as studied using Percoll density gradients. In serum-containing medium the majority of cell-bound EGF was initially taken up into a Golgi-like vesicle of density 1.046, corresponding to the marker galactosyl transferase, and then delivered to a population of vesicles with similar density as lysosomes (? =1.068–1.110). A portion of the EGF became degraded and was released from the cell into the medium while the remainder stayed with the cells, intact, for a long period of time. In serum-free medium, EGF became associated with a heterogeneous population of vesicles with a mean density of 1.050 which do not correspond to any of the marker enzymes for subcellular organelles for which we have tested (Golgi, endoplasmic reticulum, plasma membrane, lysosomes). It is then transferred to lysosome-like vesicles (? = 1.068–1.110). We therefore propose that EGF is processed through two separate endocytotic routes which are regulated by the cell depending upon its physiological state.  相似文献   

7.
Signal attenuation from ligand-activated epidermal growth factor receptor (EGFR) is mediated in part by receptor endocytosis and trafficking to the lysosomal degradative compartment. Uncoupling the activated EGFR from endocytosis and degradation has emerged as a mechanism for oncogenic activation of the EGFR. The Abl nonreceptor tyrosine kinase is activated by ligand-stimulated EGFR, but the role of Abl in EGFR signaling has not been defined. Here we uncovered a novel role for the activated Abl kinase in the regulation of EGFR endocytosis. We show that activated Abl impairs EGFR internalization. Moreover, we show that activated Abl phosphorylates the EGFR primarily on tyrosine 1173, and that mutation of this site to phenylalanine restores ligand-dependent endocytosis of the EGFR in the presence of activated Abl. Furthermore, we show that activated Abl allows the ligand-activated EGFR to escape Cbl-dependent down-regulation by inhibiting the accumulation of Cbl at the plasma membrane in response to epidermal growth factor stimulation and disrupting the formation of the EGFR.Cbl complex without affecting Cbl protein stability. These findings reveal a novel role for Abl in promoting increased cell-surface expression of the EGFR and suggest that Abl/EGFR signaling may cooperate in human tumors.  相似文献   

8.
alpha1,6-Fucosyltransferase (Fut8) catalyzes the transfer of a fucose residue to N-linked oligosaccharides on glycoproteins via an alpha1,6-linkage to form core fucosylation in mammals. We recently found that disruption of the Fut8 gene induces severe growth retardation and early postnatal death. To investigate the molecular mechanism involved, we have established embryonic fibroblasts of Fut8+/+ and Fut8-/-, derived from wild-type and Fut8-null mice, respectively. Interestingly, the epidermal growth factor (EGF)-induced phosphorylation levels of the EGF receptor (EGFR) were substantially blocked in Fut8-/- cells, compared with Fut8+/+ cells, while there are no significant changes in the total activities of tyrosine phosphatase for phosphorylated EGFR between two cells. The inhibition of EGFR phosphorylation was completely restored by re-introduction of the Fut8 gene to Fut8-/- cells. Consistent with this, EGFR-mediated JNK or ERK activation was significantly suppressed in Fut8-/- cells. Finally, we found that the core fucosylation of N-glycans is required for the binding of the EGF to its receptor, whereas no effect was observed for the expression levels of EGFR on the cell surface. Collectively, these results strongly suggest that core fucosylation is essential for EGF receptor-mediated biological functions.  相似文献   

9.
To identify proteins that participate in clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR), 13 endocytic proteins were depleted in HeLa cells using highly efficient small interfering RNAs that were designed using a novel selection algorithm. The effects of small interfering RNAs on the ligand-induced endocytosis of EGFR were compared with those effects on the constitutive internalization of the transferrin receptor. The knock-downs of clathrin heavy chain and dynamin produced maximal inhibitory effects on the internalization of both receptors. Depletion of alpha, beta2, or micro2 subunits of AP-2 reduced EGF and transferrin internalization rates by 40-60%. Down-regulation of several accessory proteins individually had no effect on endocytosis but caused significant inhibition of EGF and transferrin endocytosis when the homologous proteins were depleted simultaneously. Surprisingly, knockdown of clathrin-assembly lymphoid myeloid leukemia protein, CALM, did not influence transferrin endocytosis but considerably affected EGFR internalization. Thus, CALM is the second protein besides Grb2 that appears to play a specific role in EGFR endocytosis. This study demonstrates that the efficient gene silencing by rationally designed small interfering RNA can be used as an approach to functionally analyze the entire cellular machineries, such as the clathrin-coated pits and vesicles.  相似文献   

10.
Substantial amounts of epidermal growth factor (EGF) are cleared from the circulation by hepatocytes via receptor-mediated endocytosis and subsequently degraded within lysosomes. We have used a combined biochemical and morphological approach to examine the fate of the receptor after exposure to EGF. Polyclonal antibodies were prepared against the purified receptor and their specificity established by immunoprecipitation and immunoblotting techniques. The EGF receptor was then localized by immunofluorescence and immunoperoxidase techniques and quantified on immunoblots. In untreated livers, EGF receptor was restricted to the sinusoidal and lateral surfaces of hepatocytes. 2-4 min after exposure of cells to EGF, the receptor was found in small vesicles (i.e., coated vesicles) as well as larger vesicles and tubules at the cell periphery. By 15 min the receptor was found in multivesicular endosomes located near bile canaliculi. Exposure of hepatocytes to EGF also resulted in a rapid loss of receptor protein from total liver homogenates and a decrease in its half-life from 8.7 h in control livers to 2.5 h. This EGF-induced loss of receptors was not observed when lysosomal proteinases were inhibited by leupeptin or when endosome/lysosome fusion was prevented by low temperature (16 degrees C). In the presence of leupeptin, receptor could be detected in structures identified as lysosomes using acid-phosphatase cytochemistry. All these results suggested rapid internalization of EGF receptors in response to ligand and degradation within lysosomes. However, four times more ligand was degraded at 8 h than the number of high-affinity (Kd of 8-15 nM) EGF-binding sites lost, suggesting either (a) high-affinity receptors were recycled, and/or (b) more than 300,000 receptors were available for EGF uptake. We identified and characterized a latent pool of approximately 300,000 low-affinity receptors (Kd approximately 200 nM) that could be separated on sucrose gradients from the plasma membrane pool of approximately 300,000 high-affinity receptors (Kd of 8-15 nM). Despite the differences in their binding affinities, the high- and low-affinity receptors appeared to be structurally identical and were both EGF-dependent protein kinases. In addition, the dynamics of the low-affinity receptors were consistent with a functional role in EGF uptake and delivery to lysosomes.  相似文献   

11.
Endocytosis of the epidermal growth factor receptor (EGFR) is important for the regulation of EGFR signaling. However, EGFR endocytosis mechanisms are poorly understood, which precludes development of approaches to specifically inhibit EGFR endocytosis and analyze its impact on signaling. Using a combination of receptor mutagenesis and RNA interference, we demonstrate that clathrin-dependent internalization of activated EGFR is regulated by four mechanisms, which function in a redundant and cooperative fashion. These mechanisms involve ubiquitination of the receptor kinase domain, the clathrin adaptor complex AP-2, the Grb2 adaptor protein, and three C-terminal lysine residues (K1155, K1158, and K1164), which are acetylated, a novel posttranslational modification for the EGFR. Based on these findings, the first internalization-defective EGFR mutant with functional kinase and normal tyrosine phosphorylation was generated. Analysis of the signaling kinetics of this mutant revealed that EGFR internalization is required for the sustained activation of protein kinase B/AKT but not for the activation of mitogen-activated protein kinase.  相似文献   

12.
Incubation of fetal rat hepatocytes (FRH) with transforming growth factor beta 1 (TGF-beta 1) resulted in growth arrest and a biphasic effect on epidermal growth factor (EGF) receptor. After 2 h of exposure, EGF receptor (EGFR) was reduced by 43%. From 6 to 24 h, TGF-beta 1 exposure resulted in progressive increase in EGFR up to 74% over control. The increased binding was due to increase in high affinity EGF binding sites. FRH grown in medium containing EGF exhibited down-regulated EGFR with loss of high affinity EGF binding sites. With TGF-beta 1 exposure, high affinity EGFR was not down-regulated by EGF. Since down-regulation of EGFR involves internalization, the kinetics of EGF receptor-mediated endocytosis were examined. In TGF-beta 1-exposed FRH, EGF endocytosis was inhibited, with a reduction in the first order rate constant for the process from 0.078 to 0.043 min-1. Despite inhibition of growth, receptor down-regulation, and EGF endocytosis after TGF-beta 1 exposure, EGF-induced receptor autophosphorylation was preserved as demonstrated by [32P]phosphate-labeling of immunoprecipitated EGFR. These observations provide direct evidence that TGF-beta 1 regulates growth of fetal cells. Further, they suggest that TGF-beta 1 regulates endocytosis of EGF and possibly of other ligands.  相似文献   

13.
Growth factor activity was partially purified from mouse liver plasma membranes and its growth-stimulatory action on cultured mouse fibroblasts was studied. The plasma membrane-associated growth factor (PMGF) was unable to support the proliferation of mouse fibroblasts in monolayer when added as the sole source of growth factor. However, it stimulated the growth of fibroblasts in the presence of CM-Sephadex-treated human platelet-poor plasma (h-CMP) which by itself is not growth-stimulatory. The stimulation of DNA synthesis in quiescent fibroblasts was also observed upon the addition of PMGF and h-CMP. Under the same conditions, both platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) showed the same effect as did PMGF. The synergistic action of h-CMP with PMGF on quiescent cells was partially reproduced by insulin at microgram quantities or by insulin-like growth factor I(IGF-I) at nanogram quantities. Thus, the data presented here indicates that the action of PMGF is similar to that of the family of growth factors termed 'competence factor', and distinct from that of plasma growth factors termed 'progression factor'.  相似文献   

14.
We have investigated epidermal growth factor (EGF)‐induced compartmentalization and activation of the EGF receptor (EGFR) in rat liver plasma membrane (PM) raft subfractions prepared by three different biochemical methods previously developed to characterize the composition of membrane rafts. Only detergent‐resistant membranes (DRMs) possessed the basic characteristics attributed to membrane rafts. Following the administration of a low dose of EGF (1 µg/100 g BW) the content of EGFR in PM–DRMs did not change significantly; whereas after a higher dose of EGF (5 µg/100 g BW) we observed a rapid and marked disappearance of EGFR (around 80%) from both PM and DRM fractions. Interestingly, following the administration of either a low or high dose of EGF, the pool of EGFR in the PM–DRM fraction became highly Tyr‐phosphorylated. In accordance with the higher level of EGFR Tyr‐Phosphorylation, EGF induced an augmented recruitment of Grb2 and Shc proteins to PM–DRMs compared with whole PM. Furthermore neither high nor low doses of EGF affected the caveolin content in DRMs and PM. These observations suggest that EGFR located in DRMs are competent for signaling, and non‐caveolae PM rafts are involved in the compartmentalization and internalization of the EGFR. J. Cell. Biochem. 107: 96–103, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
The intracellular translocation and processing of epidermal growth factor (EOF) in 3T3 cells has been studied utilizing Percoll density gradients. EGF is internalized and rapidly becomes associated with two types of intracellular compartments. The extent to which EGF is delivered to these two compartments is apparently regulated depending upon the cell's physiological condition. In growth medium, an increased proportion of EGF is taken up into a Golgi-like element. Uptake through this pathway correlates with a decrease in degradation of the ligand. In the absence of scrum and amino acids, an increased proportion of EGF is taken up into a component which has a density of 1.05. Uptake through this pathway correlates with increased degradation of the ligand. The ligand taken up through both pathways is transferred to dense vesicles which comigrate with lysosomes. In the presence of growth medium, however, dense vesicles containing EGF can be shown to be lysosomal enzyme-deficient upon further fractionation. In addition, in the presence of serum, a portion of the internalized EGF is apparently released from the cells, intact, and then re-bound. The processes described may be important in the production of a mitogenic response and the ability of cells to self-regulate their responsiveness to the growth factor.  相似文献   

17.
Summary Altered expression of epidermal growth factor receptor (EGFR) is common in a variety of epithelial malignancies, including cervical cancer. However, the prognostic significance of EGFR expression is controversial for cervical cancer. Platelet-derived growth factor receptor (PDGFR) expression status is unknown in cervical cancer. Our results demonstrated that expression of EGFR and PDGFR was greatly enhanced in vivo and in organotypic cultures of low-grade cervical dysplastic tissues, but levels were decreased in high-grade lesions. To our knowledge, this is the first report identifying the expression of PDGFR in human epithelium. When low-grade dysplastic organotypic culture tissues were induced to differentiate more completely, EGFR expression, but not PDGFR expression, was relocalized to the basal layer as seen in normal tissues. Differentiation also induced phosphorylation of EGFR but not PDGFR. Our results suggest a role for EGFR and PDGFR during the early stages of cervical carcinogensis, and demonstrate the facility of organotypic cultures to study the role of these growth factors in the development of cervical cancer.  相似文献   

18.
Transforming growth factor beta (TGF beta) alters the cellular response to epidermal growth factor (EGF) in a number of systems, but the underlying mechanisms for these alterations are largely unknown. We have examined second messenger formation in Rat-1 cells following treatment with EGF and/or TGF beta to determine whether the ability of TGF beta to potentiate some EGF-stimulated processes might be mediated by TGF beta-induced alterations in the signal transduction mechanism. Incubation of serum-deprived confluent Rat-1 cells with 10 ng/ml TGF beta resulted in a marked elevation of cellular inositol trisphosphate and inositol tetrakisphosphate levels, which were maximal at 4 h and maintained for at least 8 h. The effect of TGF beta on levels of inositol trisphosphate and inositol tetrakisphosphate was blocked by actinomycin D, suggesting that RNA synthesis was required for the TGF beta effect. While EGF stimulation induced a rapid and transient (5 min) rise in inositol phosphate levels in control cells, the EGF effect was considerably increased, both in magnitude and duration, by TGF beta treatment. Measurement of intracellular free Ca2+ with fura-2 demonstrated that TGF beta treatment markedly increased the EGF-stimulated rise in free Ca2+ and increased the duration of the response. The positive effects of TGF beta on EGF stimulation could not be explained on the basis of increased EGF binding to cells. We conclude that TGF beta treatment can both activate phosphatidylinositol turnover independently and also sensitize Rat-1 cells to stimulation by EGF.  相似文献   

19.
We previously reported that 125I-labeled epidermal growth factor is processed intracellularly to acidic macromolecules in Rat-1 fibroblasts. The present study defines the precursor-product relationship and localization of the processing steps to subcellular organelles by the use of a single isoelectric species of 125I-epidermal growth factor and Percoll gradient fractionation. The native pI 4.55 125I-epidermal growth factor was rapidly processed to a pI 4.2 species on or near the cell surface and in organelles corresponding to clathrin-coated vesicles, Golgi, and endoplasmic reticulum. This species was then processed to a pI 4.35 species in similar organelles. The pI 4.2 and 4.35 species were converted to a pI 4.0 species in dense, lysosome-like organelles. This species was ultimately degraded and exocytosed from the cell as low molecular weight products.  相似文献   

20.
Endocytosis of ligand-activated receptors requires dynamin-mediated GTP hydrolysis, which is regulated by dynamin self-assembly. Here, we demonstrate that phosphorylation of dynamin I by c-Src induces its self-assembly and increases its GTPase activity. Electron microscopic analyses reveal that tyrosine-phosphorylated dynamin I spontaneously self-assembles into large stacks of rings. Tyrosine 597 was identified as being phosphorylated both in vitro and in cultured cells following epidermal growth factor receptor stimulation. The replacement of tyrosine 597 with phenylalanine impairs Src kinase-induced dynamin I self-assembly and GTPase activity in vitro. Expression of Y597F dynamin I in cells attenuates agonist-driven epidermal growth factor receptor internalization. Thus, c-Src-mediated tyrosine phosphorylation is required for the function of dynamin in ligand-induced signaling receptor internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号