首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase the use efficiency of potassium (K) fertilizer, special attention was paid to the dynamics of soil K in the root zone and non-root zone. Difference in K dynamics between yellowish red soil and yellow cinnamon soil under rapeseed (Brassica napus L.)rice (Oryza sativa L.) rotation was studied using a rhizobox system. Results showed that soil water soluble K (Sol-K) and exchangeable K (Ex-K) in the root zone of both soils were reduced in the early stage of rapeseed growth. Along with plant growth and K uptake, soil Sol-K in the inner (0–20 mm to root zone), middle (20–40 mm) and outer (40–60 mm) compartments of the non-root zone of yellowish red soil migrated towards the root zone. As a result, soil Ex-K was transformed into Sol-K. The changes in soil Sol-K and Ex-K in the non-root zone of yellow cinnamon soil were similar to yellowish red soil, and soil non-exchangeable K (Nonex-K) in the root zone also decreased significantly. In the early stage of rice growth, waterlogging promoted diffusion of soil Sol-K from non-root zone to root zone and transformation of Ex-K into Sol-K. Along with the growth of rice and K uptake, soil Ex-K in each compartment of yellowish red soil decreased significantly. Soil Sol-K and Ex-K in the yellow cinnamon soil declined to a certain extent, and then remained unchanged, while soil Nonex-K kept on decreasing. It revealed that the plants first absorbed K in the root zone, of which K reserve was replenished by a gradual diffusion of K from the non-root zone. The closer to the root zone, the greater the contribution to K uptake by plants. Within one rotation cycle, Ex-K and Sol-K in yellowish red soil were the main forms of K available to the plants, and little Nonex-K could be absorbed. However, in the yellow cinnamon soil, Nonex-K was the main form of K available to the plants, followed by Ex-K and Sol-K.  相似文献   

2.
硝态氮(NO3^—)对水稻侧根生长及其氮吸收的影响   总被引:6,自引:0,他引:6  
侧根是植物吸收利用土壤养分的重要器官 ,其生长发育受内部遗传因子和外部环境矿质养分的影响。通过琼脂分层培养发现 :局部供应NO-3 可以诱导水稻 (OryzasativaL .)主根或不定根上侧根的生长。为研究旱种条件下NO-3 对水稻侧根发育及其N吸收的影响 ,设置了 3个蛭石培养实验 :分根处理、全株缺N、全株供N处理。分根处理 (一半根系供应 3mmol/LKNO3,另一半根系供应 3mmol/LKCl)结果表明 :局部供应NO-3 能够促进水稻侧根生长。而在全株处理下 ,N饥饿诱导了侧根的伸长。水稻根系对NO-3 的这两种反应都存在着显著的基因型差异。同时对地上部N浓度、可溶性总糖含量及N含量分析表明 ,这些生理指标在分根处理与全株加N处理中的差异均不显著 ,表明分根处理也能基本满足植株正常生长对N的需求。在分根处理中 ,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关 ,这表明在养分不均一的介质中 ,侧根长度对水稻N素吸收具有十分重要的作用。而在N素充足的条件下 ,两者之间的相关性并不显著 ,这暗示在养分充足的环境下 ,侧根长度可能并不是决定根系吸收N素的主要因素  相似文献   

3.
侧根是植物吸收利用土壤养分的重要器官,其生长发育受内部遗传因子和外部环境矿质养分的影响.通过琼脂分层培养发现:局部供应NO-3可以诱导水稻( Oryza sativa L.)主根或不定根上侧根的生长.为研究旱种条件下NO-3对水稻侧根发育及其N吸收的影响,设置了3个蛭石培养实验:分根处理、全株缺N、全株供N处理.分根处理(一半根系供应3 mmol/L KNO3,另一半根系供应3 mmol/L KCl)结果表明:局部供应NO-3 能够促进水稻侧根生长.而在全株处理下,N饥饿诱导了侧根的伸长.水稻根系对NO-3的这两种反应都存在着显著的基因型差异.同时对地上部N浓度、可溶性总糖含量及N含量分析表明,这些生理指标在分根处理与全株加N处理中的差异均不显著,表明分根处理也能基本满足植株正常生长对N的需求.在分根处理中,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关,这表明在养分不均一的介质中,侧根长度对水稻N素吸收具有十分重要的作用.而在N素充足的条件下,两者之间的相关性并不显著,这暗示在养分充足的环境下,侧根长度可能并不是决定根系吸收N素的主要因素.  相似文献   

4.

Aims

This study aimed to determine the capacity of Si to mitigate Al toxicity in upland rice plants (Oryza sativa L.) by evaluating plant growth and the Si and Al uptake kinetics.

Methods

Plants were grown for 40 days, after which the Si and Al uptake kinetics (Cmin, Km and Imax) were analyzed. Then, the shoots and roots were separated, and the dry matter, root morphology and Si and Al concentration and accumulation in the plant were evaluated.

Results

Aluminum decreased plant growth and the Si uptake capacity by decreasing the root growth and Si transport system efficiency in the upland rice roots (> Km and > Cmin). Silicon mitigated Al toxicity in the upland rice plants by decreasing Al transport to the plant shoots, although it did not reduce the Al uptake rate (Imax). Si treatment increased the growth of upland rice plant shoots grown in the presence of Al without influencing the root growth. The alleviation of Al toxicity by Si is more evident in the susceptible upland rice cultivar Maravilha.

Conclusions

Silicon mitigated Al toxicity in the upland rice plants by decreasing Al transport to the plant shoots but did not reduce the Al uptake rate by roots.
  相似文献   

5.
Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice   总被引:19,自引:0,他引:19       下载免费PDF全文
The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0-1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1-4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F(2) populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene.  相似文献   

6.
A model for water uptake by plant roots   总被引:4,自引:0,他引:4  
We present a model for water uptake by plant roots from unsaturated soil. The model includes the simultaneous flow of water inside the root network and in the soil. It is constructed by considering first the water uptake by a single root, and then using the parameterized results thereby obtained to build a model for water uptake by the developing root network. We focus our model on annual plants, in particular the model will be applicable to commercial monocultures like maize, wheat, etc. The model is solved numerically, and the results are compared with approximate analytic solutions. The model predicts that as a result of water uptake by plant roots, dry and wet zones will develop in the soil. The wet zone is located near the surface of the soil and the depth of it is determined by a balance between rainfall and the rate of water uptake. The dry zone develops directly beneath the wet zone because the influence of the rainfall at the soil surface does not reach this region, due to the nonlinear nature of the water flow in the partially saturated soil. We develop approximate analytic expressions for the depth of the wet zone and discuss briefly its ecological significance for the plant. Using this model we also address the question of where water uptake sites are concentrated in the root system. The model indicates that the regions near the base of the root system (i.e. close to the ground surface) and near the root tips will take up more water than the middle region of the root system, again due to the highly nonlinear nature of water flow in the soil.  相似文献   

7.
He  Yong  Liao  Hong  Yan  Xiaolong 《Plant and Soil》2003,248(1-2):247-256
A localized supply of phosphorus may affect root morphology and architecture, and thereby affect phosphorus uptake by rice plants. In the present study, we attempted to test this hypothesis using two rice cultivars representing upland and lowland ecotypes grown in specially designed split and stratified soil cultures with a low-phosphorus red soil. Our data indicate that a localized supply of phosphorus increased both total root length and root fineness, particularly in the high-phosphorus zone. In split culture, plants roots tended to preferentially grow on the high-phosphorus zone, with about 70–75% of the total root length allocated to the high-phosphorus compartment. The total root length on the high-phosphorus side in the split-phosphorus treatment was significantly longer than that in the homogenously high-phosphorus treatment, implying that a phosphorus-deficiency signal from the low-phosphorus side may stimulate the growth of the roots located in the high-phosphorus zone. In stratified soil culture, changes in root morphology and architecture were also observed as indicated by increased total root length, root fineness and relative root allocation in the high-phosphorus layers, again suggesting altered root morphology and preferential root proliferation in the high-phosphorus regions. The induced changes in root morphology and architecture by localized phosphorus supply may have both physiological significance and practical implications in that plants can meet the demand for phosphorus with parts of the roots reaching the high-phosphorus zone, hence localized fertilization methods such as side dressing or banded application of phosphorus fertilizers may both minimize phosphorus fixation by the soil and increase phosphorus uptake efficiency from the fertilizers.  相似文献   

8.
Kerley  S.J.  Huyghe  C. 《Plant and Soil》2001,236(2):275-286
Four quantitative trait loci (QTLs) for P uptake were previously identified in a rice population that had been developed from a cross between the indica landrace Kasalath (high P uptake) with the japonica cultivar Nipponbare (low P uptake). For further studies, near isogenic lines (NILs) were developed for a major QTL linked to marker C443 on chromosome 12 and for a minor QTL linked to C498 on chromosome 6. On a highly P-deficient upland soil (aerobic conditions), NIL-C443 had three to four times the P uptake of Nipponbare, whereas the advantage of NIL-C498 was in the range of 60–90%. The superiority of NILs over Nipponbare vanished when grown in the same soil under anaerobic paddy conditions. All genotypes had high P uptake when P was supplied at a rate of 60 kg P ha–1, regardless of soil conditions. These results confirmed the presence of both QTLs and furthermore implied that QTLs affected absorption mechanisms that specifically increased P uptake in a P deficient upland soil.Additional experiments were conducted to investigate if the effect of QTLs is linked to an increase in root growth or due to more efficient P uptake per unit root size (higher root efficiency). Root size did not differ significantly between genotypes in the plus-P treatment. P deficiency, however, reduced the root surface area of Nipponbare by more than 80% whereas NIL-C443 maintained almost half of its non-stress root surface area. The low root growth of Nipponbare observed under P deficiency was probably the result of insufficient P uptake to sustain plant growth, including root growth. Genotypic differences in the ability to maintain root growth, therefore are likely caused by some mechanism that increases the efficiency of roots to access P forms not readily available. This however, only had an effect in aerobic soil. Potential mechanisms leading to higher P uptake of NILs are discussed.  相似文献   

9.
Pandeya  S.B.  Singh  A.K.  Dhar  P. 《Plant and Soil》1998,198(2):117-125
The influence of fulvic acid (FA) on the porous system self diffusion coefficient (Dp) of Fe in Calciorthent soils of Bihar, India, was determined with the half cell technique. Significantly higher values of Dp were observed when Fe was applied as Fe–FA to the soil compared to FeCl3. The capacity factor of Fe decreased considerably due to its complexation by fulvic acid, resulting in an increase in the Dp of Fe. The organic carbon content of the soils correlated positively with Dp of Fe while it showed a negative relationship with active CaCO3 and the clay content of soils. A soil culture system simulating acquisition of Fe by rice was developed to investigate transport of Fe from the soil solution to the surface of the plant roots through diffusion and mass flow. Mass flow contributed only 5–9% of the total Fe uptake by rice, with the remainder being ascribed to diffusion and root interception. A significant relationship ( r =0.96**) between Dp- and Fe-uptake by rice was observed. The uptake of Fe by the crop and the percentage of tissue iron content derived from fertilizer were higher in the case of Fe–FA in comparison with FeCl3, indicating the superiority of organically complexed Fe fertilizers over inorganic salts.  相似文献   

10.
Adhikari  Tapan  Rattan  R. K. 《Plant and Soil》2000,220(1-2):235-242
The Barber-Cushman mechanistic nutrient uptake model which has been utilized extensively to describe and predict nutrient uptake by crop plants at different stages of crop growth was evaluated for its ability to predict the Zn uptake by rice seedlings. Uptake of the nutrient is, therefore, determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter root competition and time dependent root density are accounted for by soil volume that delivers nutrients. The radii of these cylinders decline with increasing density. Since mass flow and diffusion each supply zinc to the root, the process can be described mathematically using the model of Barber-Cushman (1984). The 11 parameters of the model for the uptake by rice cultivars were measured by established experimental techniques. Zinc uptake at different growth stages predicted by the model was compared to measured zinc uptake by rice cultivars grown on sandy loam soil in a green house. Predicted zinc uptake was significantly correlated with observed uptake r 2=0.99**. Sensitivity analysis was also used to investigate the impact of changes in soil nutrient supply, root morphological and root uptake kinetic parameters on simulated nutrient uptake. Overall results of sensitivity analysis indicate that the half distance between root axes, rate of root growth and water flux affect the uptake of zinc particularly at their higher values rather than at lower values and DaZn is the most sensitive parameter for zinc uptake at its lower values.  相似文献   

11.
The root zone dynamics of water uptake by a mature apple tree   总被引:14,自引:0,他引:14  
We report the results from a field experiment in which we examined the spatial and temporal patterns of water uptake by a mature apple tree (Malus domestica Borkh., ‘Splendour’) in an orchard. Time Domain Reflectometry (TDR) was used to measure changes in the soil's volumetric water content, and heat-pulse was used to monitor locally the rates of sap flow in the trunk and roots of the tree. We also measured the tree's distribution of root-length density and obtained supporting data to characterize the soil's hydraulic properties. The experimental data were used to examine the output of the WAVE-model (Vanclooster et al, 1995; Ecol. Model. 81, 183–185) in which soil water transport is predicted using Richards' equation, and where root uptake is represented by a distributed macroscopic sink term. When the surface soil layers were uniformly wet, 70% of the trees water uptake occurred in the top 0.4 m of the root zone, in which approximately 70% of the tree's fine roots were located. When a partial irrigation was applied to just one side of the root zone, the apple tree quickly shifted its pattern of water uptake with an almost two-fold increase in uptake from the wetter soil parts and a corresponding reduction in uptake from the drier parts. The response of root-sap flow to irrigation was almost immediate (i.e. root flow increased within hours of the irrigation). Following subsequent irrigations over the whole soil surface, TDR measurements revealed a surface-ward shift in the pattern of water extraction, and root flow measurements revealed a recovery in the uptake function of seemingly inactive roots located in the previously-dry soil. Via our root sap flow measurements, we observed two roots on the same tree locally responding quite differently to similar events of soil wetting. This observation suggests that there may be considerable functional variability across the apple root system. Our measurement-model calculations yielded similar results and stress the prime role played by the plant in modifying the root zone balance of water. Following an irrigation or rainfall event, root uptake by apple appears to be more dependent upon the near-surface availability of water than it is related to the distribution of fine roots.  相似文献   

12.
Summary The effects of temperature and soil moisture levels on the chemical composition of wheat forage grown in growth chambers were studied. In addition to the environmental variables, K and N fertilization effects were studied. In all the studies, increasing levels of K fertilization depressed the Mg and Ca concentration of the shoots. Nitrogen fertilization increased the Mg concentration but had no effect on the Ca concentration of the plants. N fertilization depressed the K concentration in the soil moisture experiment, but had no effect on K concentration in the temperature experiment. Increasing the temperature from 10 to 20°C did not affect the Mg and Ca concentration of the shoots, but the K concentration declined due to dilution effects caused by the greater yield at the higher temperature. In the soil moisture level experiment the K, Mg and Ca concentration in wheat tended to decline with soil moisture level due to dilution effects. Calculations showed that uptake of K was regulated primarily by diffusion of K from the soil to the plant root and that the uptake of Mg was regulated by the uptake process of the plant root and not by the nutrient transport process through the soil.This study was part of the program of the Center for Root-Soil Research. Dept. of Agronomy paper #1532.  相似文献   

13.
Chen  Jixing  Xuan  Jiaxiang  Du  Chenglin  Xie  Jianchang 《Plant and Soil》1997,188(1):131-137
With four soils differing in K supplying power and with four rice cultivars (Oryza sativa L.) differing in K uptake kinetic parameters, the relationship between K fertilizer application and soil redox status in rhizosphere and; the distribution of ferrous iron and other toxic substances on the root surface and in the rhizosphere; and the effect of K supply on uptake of reduced iron by rice plants have been studied.The results show that K application on K-deficient soils reduced the content of active reducing substances and ferrous iron in the soil, raised the soil redox potential in the rhizosphere, increased the Eh value of rice roots and lowered the content of iron in the rice plants. These effects of K varied with different rice cultivars. When no K fertilizer was applied, active reducing substances and ferrous iron in rhizosphere soils were decreased more by the rice cultivars absorbing K strongly (e.g. Shanyou 64) than by cultivars absorbing K weakly (e.g. Zhongguo 91). Therefore, the diminution of the toxic substances by K application in the weakly K-absorbing cultivars was more significant.The observation of a rhizobox separated by a nylon screen showed that appreciably more iron oxides, compared with the control, were deposited at or adjacent to the root surfaces of the rice plant supplied with K fertilizer, fully demonstrating the relationship between K nutrition and the total oxidizing power of rice plants. According to the distribution of active reducing substances and ferrous iron, the oxidizing range of the rice root extended in K application treatment a few centimeters away from the root plane. K application to rice affected the soil redox status in rhizosphere in many ways. The main effect was an increase of the oxidizing power of the rice root. As a result, the value of soil Eh was increased, the contents of active reducing substances and ferrous iron were lowered, as well as the number of oxygen consuming microorganisms.  相似文献   

14.
Plant uptake of radiocaesium from soil is an important pathway for the entry of this pollutant into the human food chain and so contributes to any assessment of the radiation dose following contamination. Large differences in soil–plant transfer factors have been reported for plant species grown on the same soils. Few studies have attempted to distinguish between differences in root uptake and root-to-shoot translocation. We have investigated the root uptake of radiocaesium from artificially contaminated soils and the subsequent translocation to shoots for various plant species grown on three agricultural soils. The effects of short contact times and potassium starvation or enrichment have been studied. The Cs adsorption properties of rhizosphere soils have been compared with those of the initial soils. The proportion of activity removed from soil is largely soil dependent. Root uptake properties have less effect, but appear to be species determined, and not influenced by soil properties. Differences in soil-to-shoot transfer factor arise from species-dependent differences in root-to-shoot translocation. Root-to-shoot activity ratios are not soil dependent. There was little effect of soil potassium status. Root action slightly enhanced Cs adsorption on one soil, probably due to mineral weathering associated with the release of nonexchangeable potassium.  相似文献   

15.
土壤中镉、铅、锌及其相互作用对作物的影响   总被引:18,自引:0,他引:18       下载免费PDF全文
通过作物盆栽模拟试验(砂壤质褐土、pH值8.2)揭示:土壤中分别施入镉(CdCl2)、铅[Pb(CH3COO)2]或锌(ZnSO4)其影响表现为,植物各器官镉的含量超过对照植物的数倍至500倍。土壤镉浓度<5ppm和<10ppm分别造成某些蔬菜和水稻的污染。铅主要积累在植物根部,土壤铅污染对作物的影响较小。锌主要积累在植物叶片和根部,对水稻产生生长抑制的土壤锌浓度临界值不大于200ppm,此浓度对旱作无影响。土壤中同时施入镉和铅,植物对镉的吸收增加。而土壤中镉的增加却减少了植物体内铅的含量。土壤中由于镉、锌或铅、锌相互作用的结果,水稻对它们的吸收都有增加。在旱地土壤锌浓度的增高,降低了植物对镉、铅的吸收。镉、铅、锌同时施入土壤由于相互作用的结果,除锌之外,植物对镉、铅的吸收有明显下降。评价土壤重金属污染,不仅要看它们的含量及其存在形态,而且要分析它们之间的相互作用(促进或拮抗)特点。  相似文献   

16.
Vetterlein  Doris  Jahn  Reinhold 《Plant and Soil》2004,258(1):307-327
Soil solution composition changes with time and distance from the root surface as a result of mass flow, diffusion, plant nutrient uptake and root exudation. A model system was designed, consisting of a root compartment separated from the bulk soil compartment by a nylon net (30 m mesh size), which enabled independent measurements of the change of soil solution composition and soil water content with increasing distance from the root surface (nylon net). K+ concentration in the rhizosphere soil solution decreased during the initial growth stage (12 days after planting, DAP). Thereafter K+ accumulated with time, due to mass flow as the dominating process. The extend of K+ accumulation depended on the initial fertiliser application. As K+ concentrations in soil solution increase, not only as a result of transport exceeding uptake, but also as a result of decreasing soil water content, it is hypothesised that K concentration in soil solution is not the only trigger for the activity of K transporters in membranes, but ABA accumulation in roots induced by decreasing soil matric potentials may add to the regulation. A strong decrease of rhizosphere pH with time is observed as a result of H+ efflux from the roots in order to maintain cation-anion balance. In addition the K+ to Ca2+ ratio was altered continuously during the growing period, which has an impact on Ca2+ uptake and thus firmness of cell walls, apoplast pH, membrane integrity and activity of membrane transporters. The value of osmotic potential in the rhizosphere soil solution increased with time indicating decreasing soil water availability. Modelling approaches based on the data obtained with the system might help to fill in the time gaps caused by the low temporal resolution of soil solution sampling method.  相似文献   

17.
Summary Flooded soils, which accumulate gaseous products of anaerobic fermentation, are often associated with poor rice plant growth. In the present experiment the effects of CO2, CH4, N2, and air on rice seedling growth and nutrition were evaluated. Nutrient culture techniques were used to avoid secondary soil effects normally experienced.Carbon dioxide gas in the root zone of rice reduced seedling growth significantly, whereas CH4 and N2 had no significant effect. Methane gave no stimulatory benefits, unlike results reported by some earlier workers. Of three major nutrient elements studied, P uptake was affected more than N or K. Phosphorus uptake was significantly reduced in leaves and sheaths by all three gases, but was significantly increased in roots. This suggests an immobilization mechanism affecting P in roots, and since CO2, CH4, and N2 behaved similarly in contrast to air, a lack of oxygen in the root system is suspected as the causal mechanism rather than toxic effects of gases. Effects on N and K uptake were minimal and insignificant.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.Contribution from the Department of Agronomy and Range Science, University of California, Davis, California 95616.  相似文献   

18.
Modeling soil water movement with water uptake by roots   总被引:16,自引:0,他引:16  
Wu  Jinquan  Zhang  Renduo  Gui  Shengxiang 《Plant and Soil》1999,215(1):7-17
Soil water movement with root water uptake is a key process for plant growth and transport of water and chemicals in the soil-plant system. In this study, a root water extraction model was developed to incorporate the effect of soil water deficit and plant root distributions on plant transpiration of annual crops. For several annual crops, normalized root density distribution functions were established to characterize the relative distributions of root density at different growth stages. The ratio of actual to potential cumulative transpiration was used to determine plant leaf area index under water stress from measurements of plant leaf area index at optimal soil water condition. The root water uptake model was implemented in a numerical model. The numerical model was applied to simulate soil water movement with root water uptake and simulation results were compared with field experimental data. The simulated soil matric potential, soil water content and cumulative evapotranspiration had reasonable agreement with the measured data. Potentially the numerical model implemented with the root water extraction model is a useful tool to study various problems related to flow transport with plant water uptake in variably saturated soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Summary This experiment examined the feasibility of predicting K uptake in white clover by the use of simple and relatively rapid tests that would dispense with the need of knowing the quantity of plant available potassium. Potassium uptake was found to correlate highly (R=>0.9) in linear bivariate regressions using K concentration in the soil solution displaced by centrifuging and an empirical estimate of potassium retention. There was no advantage in determining activity ratios because in at least some of the soils used the ratio law did not apply. Exchangeable potassium alone correlated rather poorly with uptake except at very low soil potassium status. This was not because nonexchangeable potassium was an important source of this nutrient to white clover but because of the large differences in the retention of K amongst the soils used.  相似文献   

20.
Soil contamination with radiocaesium (Cs) has a long-term radiological impact because it is readily transferred through food chains to human beings. Plant uptake is the major pathway for the migration of radiocaesium from soil to human diet. The plant-related factors that control the uptake of radiocaesium are reviewed. Of these, K supply exerts the greatest influence on Cs uptake from solution. It appears that the uptake of radiocaesium is operated mainly by two transport pathways on plant root cell membranes, namely the K(+) transporter and the K(+) channel pathway. Cationic interactions between K and Cs on isolated K-channels or K transporters are in agreement with studies using intact plants. The K(+) transporter functioning at low external potassium concentration (often <0.3 mM) shows little discrimination against Cs(+), while the K(+) channel is dominant at high external potassium concentration with high discrimination against Cs(+). Caesium has a high mobility within plants. Although radiocaesium is most likely taken up by the K transport systems within the plant, the Cs:K ratio is not uniform within the plant. Difference in internal Cs concentration (when expressed on a dry mass basis) may vary by a factor of 20 between different plant species grown under similar conditions. Phytoremediation may be a possible option to decontaminate radiocaesium-contaminated soils, but its major limitation is that it takes an excessively long time (tens of years) and produces large volumes of waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号