首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patterns of ovarian follicle development were monitored daily in Holstein-Friesian cows that had two (n = 4) or three (n = 4) waves of ovarian follicle development during a single estrous cycle. The plasma from daily blood samples was used in assays for inhibin A, FSH, progesterone, and estradiol-17beta. Mean cycle lengths for cows with two and three waves were 21.8 and 25.3 days, respectively (P < 0.02). Although the average number of follicles >3-mm diameter on each pair of ovaries was similar for two- and three-wave cows on Days 2, 3, and 4 (Day 0 = day of ovulation; 8.6 vs. 9.6 follicles), there were more follicles >6-mm diameter on the ovaries of cows with two waves on Days 3 and 4. This difference was associated with a shorter interval from wave emergence to peak concentrations of inhibin A during the first wave in two-wave cows (2.0 vs. 3.8 days; P = 0.03) and with higher peak concentrations (474 vs. 332 pg/ml; P = 0.03). Differences in peak FSH concentrations were not significant (1.7 vs. 1.3 ng/ml; P = 0.10) and were inversely related to inhibin A concentrations. The peak concentrations of inhibin A and FSH in the second nonovulatory wave in the three-wave cows were similar to the low concentrations measured in the first wave (292 vs. 332 pg/ml of inhibin A, 1.3 vs. 1.3 ng/ml of FSH; P > 0.20). Average peak concentrations of inhibin A and FSH were similar during the ovulatory wave for cows with either two or three waves in a cycle (432 vs. 464 pg/ml of inhibin A, 2.3 vs. 2.1 ng/ml of FSH; P > 0.3). The lower concentrations of FSH during the emergence of the first follicular wave in cows with three-wave cycles may have reduced the rate of development of some of the follicles and reduced the concentrations of inhibin A. This pattern of lower concentrations of FSH and inhibin A was repeated in the second nonovulatory wave but not in the ovulatory wave. Subtle differences in the concentrations of these two hormones may underlie the mechanism that influences the number of waves of ovarian follicle development that occur during the bovine estrous cycle.  相似文献   

2.
Most estrous cycles in cows consist of 2 or 3 waves of follicular activity. Waves of ovarian follicular development comprise the growth of dominant follicles some of which become ovulatory and the others are anovulatory. Ovarian follicular activity in cows during estrous cycle was studied with a special reference to follicular waves and the circulating concentrations of estradiol and progesterone. Transrectal ultrasound examination was carried out during 14 interovulatory intervals in 7 cows. Ovarian follicular activity was recorded together with assessment of serum estradiol and progesterone concentrations. Three-wave versus two-wave interovulatory intervals was observed in 71.4% of cows. The 3-wave interovulatory intervals differed from 2-wave intervals in: 1) earlier emergence of the dominant follicles, 2) longer in length, and 3) shorter interval from emergence to ovulation. There was a progressive increase in follicular size and estradiol production during growth phase of each wave. A drop in estradiol concentration was observed during the static phase of dominant anovulatory follicles. The size of the ovulatory follicle was always greater and produced higher estradiol compared with the anovulatory follicle. In conclusion, there was a predominance of 3-wave follicular activity that was associated with an increase in length of interovulatory intervals. A dominant anovulatory follicle during its static phase may initiate the emergence of a subsequent wave. Follicular size and estradiol concentration may have an important role in controlling follicular development and in determining whether an estrous cycle will have 2 or 3-waves.  相似文献   

3.
Experiments were conducted to elucidate the mechanisms of active immunization against inhibin on ovarian follicular development and selection in guinea pigs. Estrous cycle was synchronized in experimental guinea pigs by implanting progesterone containing tubes. Antibodies that bound 125I-labeled bovine inhibin were produced by all guinea pigs receiving the inhibin vaccine (recombinant ovine alpha-subunit in oil emulsion) without any effects on duration of the estrous cycle. Active immunization against inhibin increased the plasma concentrations of progesterone during the luteal phase and the plasma concentrations of estradiol but failed to increase the plasma concentration of follicle-stimulating hormone (FSH) during preovulatory period. The treatment also increased the number of corpora lutea (from 1.3+/-0.3 to 7.0+/-1.6 per each ovary), and preovulatory sized follicles (from 1.8+/-0.6 to 7.0+/-1.6 per each ovary), and follicles stained positively for inhibin alpha-subunit (from 2.3+/-0.5 to 6.3+/-1.3 per each ovary) significantly. The results indicate that active immunization against inhibin enhances ovulation rate by affecting the follicle selection and only dominant follicle can be stained for inhibin alpha-subunit in guinea pigs. This study is firstly to provide direct evidence that inhibins play important role in follicle selections in guinea pigs.  相似文献   

4.
The extent, causes, and physiological significance of the variation in number of follicles growing during ovarian follicular waves in human beings and cattle are unknown. Therefore, the present study examined the variability and repeatability in numbers of follicles 3 mm or greater in diameter during the follicular waves in bovine estrous cycles, and we determined if the variation in number of follicles during waves was associated with alterations in secretion of FSH, estradiol, inhibin, and insulin-like growth factor I (IGF-I). Dairy cattle were subjected to twice-daily ultrasound analysis to count total number of antral follicles 3 mm or greater in diameter throughout 138 different follicular waves. In another study, blood samples were taken at frequent intervals from cows that consistently had low or very high numbers of follicles during waves and were subjected to immunoassays. Results indicate the following: First, despite an approximately sevenfold variation in number of follicles during waves among animals and marked differences in age, stage of lactation, and season of the year, a very highly repeatable (0.95) number of follicles 3 mm or greater in diameter is maintained during the ovulatory and nonovulatory follicular waves of individuals. Second, variation in number of follicles 3 mm or greater in diameter during waves and the inverse association of number of follicles during waves with FSH are not directly explained by alterations in the patterns of secretion of estradiol, inhibin, or IGF-I. Third, ovarian ultrasound analysis can be used reliably by investigators to identify cattle that consistently have low or high numbers of follicles during waves, thus providing a novel experimental model to determine the causes and physiological significance of the high variation in antral follicle number during follicular waves among single-ovulating species, such as cattle or humans.  相似文献   

5.
We used immunoneutralization of endogenous estradiol to investigate deficiencies in the estradiol-feedback regulation of LH secretion as a primary cause of follicular cysts in cattle. Twenty-one cows in the prostaglandin (PG) F(2alpha)-induced follicular phase were assigned to receive either 100 ml of estradiol antiserum produced in a castrated male goat (n = 11, immunized group) or the same amount of castrated male goat serum (n = 10, control group). The time of injection of the sera was designated as 0 h and Day 0. Five cows in each group were assigned to subgroups in which we determined the effects of estradiol immunization on LH secretion and follicular growth during the periovulatory period. The remaining six estradiol-immunized cows were subjected to long-term analyses of follicular growth and hormonal profiles, including evaluation of pulsatile secretion of LH. The remaining five control cows were used to determine pulsatile secretion of LH on Day 0 (follicular phase) and Day 14 (midluteal phase). The control cows exhibited a preovulatory LH surge within 48 h after injection of the control serum, followed by ovulation of the dominant follicle that had developed during the PGF(2alpha)-induced follicular phase. In contrast, the LH surge was not detected after treatment with estradiol antiserum. None of the 11 estradiol-immunized cows had ovulation of the dominant follicle, which had emerged before estradiol immunization and enlarged to more than 20 mm in diameter by Day 10. Long-term observation of the six immunized cows revealed that five had multiple follicular waves, with maximum follicular sizes of 20-45 mm at 10- to 30-day intervals for more than 50 days. The sixth cow experienced twin ovulations of the initial persistent follicles on Day 18. The LH pulse frequency in the five immunized cows that showed the long-term turnover of cystic follicles ranged from 0.81 +/- 0.13 to 0.97 +/- 0.09 pulses/h during the experiment, significantly (P < 0.05) higher than that in the midluteal phase of the control cows (0.23 +/- 0.07). The mean LH concentration in the immunized cows was also generally higher than that in the luteal phase of the control cows. However, the LH pulse and mean concentration of LH after immunization were similar to those in the follicular phase of the control cows. Plasma concentrations of total inhibin increased (P < 0.01) concomitant with the emergence of cystic follicles and remained high during the growth of cystic follicles, whereas FSH concentrations were inversely correlated with total inhibin concentrations. In conclusion, neutralization of endogenous estradiol resulted in suppression of the preovulatory LH surge but a normal range of basal LH secretion, and this circumstance led to an anovulatory situation similar to that observed with naturally occurring follicular cysts. These findings provide evidence that lack of LH surge because of dysfunction in the positive-feedback regulation of LH secretion by estradiol can be the initial factor inducing formation of follicular cysts.  相似文献   

6.
The objective of this study was to determine the efficacy of a progesterone-releasing intravaginal silastic device (Controlled Internal Drug Release: CIDR) for inducing ovulation in beef cows with persistent ovarian cysts. Fifteen cows with cysts and abnormal cycles for over 40 days were randomly assigned to receive either a single CIDR (CIDR group, n=9), or a CIDR containing no progesterone (blank CIDR) (BLANK group, n=6) for about 14 days. Determination of plasma progesterone levels at the beginning of CIDR treatment indicated 4 of 6 BLANK cows with non-luteinized cysts and 5 of 9 CIDR cows with non-luteinized cysts. In 5 of 6 BLANK cows, one follicular wave appeared and newly emerged dominant follicles increased in size up to 20 mm in diameter and persisted during the experiment, while one cow experienced estrus with spontaneous ovulation. In contrast, during CIDR treatment, 2 or 3 waves, in which dominant follicles were from 7 to 15 mm in diameter, appeared approximately at 7-day intervals. Within 3 days after CIDR removal, estrous behavior was detected followed by ovulation of the dominant follicle in the last wave. All CIDR cows resumed normal cyclicity with 2 follicular waves for over 2 months. Insertion of a CIDR caused a rapid increase of about 2 ng/mL in plasma progesterone. The levels were greater than 1.3 ng/mL until removal of a CIDR, then dropped under 0.3 ng/mL. Concentrations of plasma estradiol in BLANK cows increased during growth of the cystic follicles, with high levels greater than 10 pg/mL for over 10 days. In 4 of 5 cows with non-luteinized cysts, with high plasma estradiol on the day of CIDR insertion, CIDR treatment resulted in rapid decline of estradiol levels. During placement of the CIDR, estradiol levels showed no increase in the growth phase of a newly appeared dominant follicle. After CIDR removal, however, estradiol significantly increased associated with the growth of ovulatory follicles in all 9 cows. A transient increase in plasma FSH levels preceded detection of each follicular or cyst wave in both BLANK and CIDR cows. Pulse frequency and mean concentration of LH in cows with non-luteinized cysts showed values corresponding to those in normal follicular phase. However, throughout CIDR treatment, these parameters reduced to levels found in the normal luteal phase. In cows with luteinized cysts, parameters of LH secretion were as low as in the normal luteal phase before and during CIDR treatment, then increased significantly after CIDR removal. Present results indicate that treatment with CIDR proved effective in restoring ovulation and reestablishing normal cyclicity in beef donor cows with cysts persistent for a long period. The CIDR reduced and maintained LH secretion at normal luteal levels, thereby, inducing atresia of estrogen-active cysts and preventing formation of cysts from the newly emerged follicles.  相似文献   

7.
Differentiation of dominant versus subordinate follicles in cattle   总被引:2,自引:0,他引:2  
Selection of a dominant follicle, capable of ovulating, from among a cohort of similarly sized follicles is a critical transition in follicular development. The mechanisms that regulate the selection of a species-specific number of dominant follicles for ovulation are not well understood. Cattle provide a very useful animal model for studies on follicular selection and dominance. During the bovine estrous cycle, two or three sequential waves of follicular development occur, each producing a dominant follicle capable of ovulating if luteal regression occurs. Follicles are large enough to allow analysis of multiple endpoints within a single follicle, and follicular development and regression can be followed via ultrasonographic imaging. Characteristics of recruited and selected follicles, obtained at various times during the first follicular wave, have been determined in some studies, whereas dominant and subordinate follicles have been compared around the time of selection in others. As follicular recruitment proceeds, mRNA for P450 aromatase increases. By the time of morphological selection, the dominant follicle has much higher concentrations of estradiol in follicular fluid, and its granulosa cells produce more estradiol in vitro than cells from subordinate follicles. Shortly after selection, dominant follicles have higher levels of mRNAs for gonadotropin receptors and steroidogenic enzymes. It has been hypothesized that granulosa cells of the selected follicle acquire LH receptors (LHr) to allow them to increase aromatization in response to LH, as well as FSH. However, LH does not appear to stimulate estradiol production by bovine granulosa cells, and the role of LHr acquisition remains to be determined. Recent evidence suggests a key role for changes in the intrafollicular insulin-like growth factor (IGF) system in selection of the dominant follicle. When follicular fluid was sampled in vivo before morphological selection, the lowest concentration of IGF binding protein-4 (IGFBP-4) was more predictive of future dominance than size or estradiol concentration. Consistent with this finding, dominant follicles acquire an FSH-induced IGFBP-4 protease activity. Thus, a decrease in IGFBP-4, which would make more IGF available to interact with its receptors and synergize with FSH to promote follicular growth and aromatization, appears to be a critical determinant of follicular selection for dominance.  相似文献   

8.
The bovine dominant follicle (DF) model was used to identify molecular mechanisms potentially involved in initial growth of DF during the low FSH milieu of ovarian follicular waves. Follicular fluid and RNA from granulosa and theca cells were harvested from 10 individual DF obtained between 2 and 5.5 days after emergence of the first follicular wave of the estrous cycle. Follicular fluid was subjected to RIA to determine estradiol (E) and progesterone (P) concentrations and RNA to cDNA microarray analysis and (or) quantitative real-time PCR. Results showed that DF growth was associated with a decrease in intrafollicular E:P ratio and in mRNA for the FSH receptor, estrogen receptor 2 (ER beta), inhibin alpha, activin A receptor type I, and a proliferation (cyclin D2) and two proapoptotic factors (apoptosis regulatory protein Siva, Fas [TNFRSF6]-associated via death domain) in granulosa cells. In contrast, mRNAs for the LH receptor in granulosa cells and for two antiapoptotic factors (TGFB1-induced antiapoptotic factor 1, LAG1 longevity assurance homolog 4 [Saccharomyces cerevisiae]) and one proapoptotic factor (tumor necrosis factor [ligand] superfamily, member 8) were increased in theca cells. We conclude that the bovine DF provides a unique model to identify novel genes potentially involved in survival and apoptosis of follicular cells and, importantly, to determine the FSH-, estradiol-, and LH-target genes regulating its growth and function. Results provide new molecular evidence for the hypothesis that DF experience a reduction in FSH dependence but acquire increased LH dependence as they grow during the low FSH milieu of follicular waves.  相似文献   

9.
The relationship between follicle growth and plasma inhibin A, FSH, LH, estradiol (E), and progesterone was investigated during the normal bovine estrous cycle and after treatment with steroid-free bovine follicular fluid (bFF) to arrest follicle development. In the first study, four heifers were monitored over three prostaglandin (PG)-synchronized cycles. Blood was collected every 2-8 h, and ovaries were examined daily by ultrasonography. Inhibin A was measured using a modified enzyme-linked immunosorbent assay that employed a new monoclonal antibody against the alpha subunit of bovine inhibin. Plasma inhibin A ( approximately 50 pg/ml before luteolysis) rose steadily during the induced follicular phase (P < 0.05) to a peak ( approximately 125 pg/ml) coincident with the preovulatory E/LH/FSH surge. After ovulation, inhibin A fell sharply (P < 0.05) to a nadir ( approximately 55 pg/ml) coincident with the secondary FSH rise. During the next 3 days, inhibin A increased to approximately 90 pg/ml in association with growth of the new dominant follicle (DF). Plasma E also rose twofold during this period, whereas FSH fell by approximately 50%. Inhibin A was negatively correlated with FSH (r = -0.37, P < 0.001) and positively correlated with E (r = 0.49, P < 0.0001). Observations on eight cycles (two cycles/heifer), in which growth of the ovulatory DF was monitored from emergence to ovulation, showed that the first-wave DF (DF1) ovulated in three cycles and the second-wave DF (DF2) in five cycles. After PG, plasma inhibin A and E increased similarly in both groups, with concomitant falls in FSH. In the former group, the restricted ability of DF1 to secrete both inhibin A and E was restored after luteolysis. Results indicate that dynamic changes in the secretion of both E and inhibin A from the DF contribute to the fall in FSH during the follicular phase and to the generation and termination of the secondary FSH surge, both of which play a key role in follicle selection. In the second study, bFF (two dose levels) was administered to heifers (n = 3-4) for 60 h starting from the time of DF1 emergence. Both doses suppressed FSH (P < 0.05) and blocked DF1 growth to the same extent (P < 0.01), although inhibin A levels were only marginally raised by the lower dose (not significant compared to controls). The high bFF dose raised (P < 0.001) inhibin A to supraphysiological levels ( approximately 1 ng/ml). A large "rebound" rise in FSH occurred within 1 day of stopping both treatments, even though the inhibin A level in the high-dose bFF group was still approximately threefold higher than that in controls. This indicates that desensitization of gonadotropes to inhibin negative feedback is a contributory factor, together with reduced ovarian output of E, in generation of the post-bFF rebound in FSH.  相似文献   

10.
Changes in follicular fluid (FF) concentrations of estradiol, inhibin forms, and insulin-like growth factor binding proteins (IGFBPs), percentage of apoptotic granulosa cells (%A), and follicular size for individual follicles in a growing cohort were determined throughout the first wave of follicular development during the bovine estrous cycle and related to FSH decline. Four groups of heifers (n = 31) were ovariectomized between Days 1.5 and 4.5 of the estrous cycle at 5 +/- 1, 33 +/- 2, 53 +/- 1, and 84 +/- 2 h after the periovulatory peak in FSH concentrations. Follicles > or = 2.5 mm were dissected, measured, and FF aspirated. The five largest follicles were ranked based on their diameter (F1 to F5). Diameters of F1 to F5 were positively correlated with interval from FSH peak (r > or = 0.6, P < 0.05). Five hours after the FSH peak, follicular diameter and FF concentrations of estradiol, inhibins, and IGFBPs were similar for F1 to F5. From 5 to 33 h, amounts of the six precursor inhibin forms (> or = 48 kDa) increased (P < 0.05) in F1 follicles. The IGFBPs in F1 follicles remained low at all time periods. At 33 h, amounts of IGFBP-4 and -5 were higher (P < 0.05) in F4 and F5 compared with F1 follicles. At 84 h, IGFBP-2, -4, and -5 were increased (P < 0.05) in F3, F4, and F5 compared with F1. At 5, 33, or 53 h, %A was not different between follicles in any size class. At 84 h %A was increased (P < 0.05) in follicles <6 mm in diameter. However, at that time, %A did not differ between the selected DF and the largest subordinate follicle. For individual heifers, the selected DF at 84 h was largest in size, highest in estradiol, and lowest in IGFBP-2 and -4. The F1 follicle had highest estradiol in 23 of 27 heifers irrespective of stage of the wave and lowest IGFBP-4 in 19 of 21 heifers from 33 h. We concluded that the earliest intrafollicular changes that differentiate a dominant-like follicle from the growing cohort are enhanced capacity to produce estradiol and maintenance of low levels of IGFBPs.  相似文献   

11.
Changes in concentrations of bioactive and immunoreactive (ir-) inhibin, estradiol-17 beta, progesterone, LH, and FSH in peripheral blood were determined in cows induced to superovulate with eCG. The pattern of follicular growth was also characterized by daily ultrasonographic examination. Hormonal profiles and follicular development during the intact estrous cycle of the same animals before eCG treatment served as controls. Equine CG increased the number of follicles of various sizes (small, greater than or equal to 4 less than 7, medium, greater than or equal to 7 less than 10; large, greater than or equal to 10 mm in diameter) by 4 days after administration. The second growth of large follicles occurred within 1 day after superovulation. Inhibin bioactivity in jugular vein blood was detectable 48 h after eCG injection (44 h before LH peak), whereas it was not detected before administration of eCG or during control cycles. Circulating levels of bioactive inhibin further increased during the two waves of growth of large follicles. The highest activity of inhibin was noted at the time of the preovulatory LH peak (0 h). Thereafter, bioactivity of inhibin in peripheral plasma dropped from 0 to 24 h after the LH peak, and the activity increased again at 72 h compared to the value at -44 h. Plasma levels of ir-inhibin showed a pattern similar to changes in bioactive inhibin in the eCG-treated cows. Plasma concentrations of estradiol-17 beta also increased concomitantly with two waves of growth of large follicles. There was no correlation between plasma levels of progesterone and inhibin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study compared serum and follicular fluid inhibin and gonadotropin profiles between chronic cystic ovarian diseased (CCOD) and normal cyclic dairy cows. Blood samples and follicular fluid were collected from CCOD cows (n=15) and cyclic cows in the follicular phase of the estrous cycle (control, n=6) and analyzed for inhibin, follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. There was a significant increase in inhibin and a decrease in FSH and LH concentrations in the follicular fluid of CCOD cows compared with those of cyclic cows (P < 0.05). Mean serum inhibin, FSH and LH concentrations between CCOD and cyclic cows were not differnt (P > 0.05), however, there was a tendency for serum inhibin to be higher and FSH to be lower in CCOD cows compared to cyclic animals (P < 0.1). The FSH pulse frequency also was lower in CCOD cows than in cyclic cows (P < 0.05). These data suggest that increased production of inhibin from cystic follicles of CCOD cows alters pituitary FSH secretion and subsequently reduces the concentration of FSH in follicular fluid. As a result, decreased FSH stimulation at the ovarian level could ultimately lead to the reduction in follicular LH and FSH receptor concentrations, resulting in abnormal follicular steroidogenesis in CCOD dairy cows.  相似文献   

13.
The characteristics of ovulatory follicular waves were studied for spontaneous waves and waves induced during the next estrous cycle by ovarian follicle ablations and administration of PGF2alpha 10 days after ovulation in 21 mares. In the induced group, both the days of the FSH surge and day of deviation were more synchronized, LH concentrations were greater before and after deviation, estradiol concentrations were greater after deviation, and the ovulatory follicle grew at a faster rate (3.4+/-0.2 compared with 2.7+/-0.1 mm/day). The frequency of two dominant follicles/wave was not different between induced waves (7 of 21) and spontaneous waves (9 of 21), but both dominant follicles ovulated more frequently in induced waves (6 of 7 waves compared with 0 of 9).  相似文献   

14.
To investigate the endocrine factors in Japanese monkeys (Macaca fuscata) responsible for the suppression of the estrous cycle during the first reproductive season after delivery (150–360 days postpartum), peripheral blood was taken to measure plasma concentrations of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone, estradiol‐17β, immunoreactive (ir)‐inhibin, and cortisol. The results demonstrated that during the breeding season of lactating Japanese monkeys, circulating concentrations of FSH (1.7–2.7 ng/ml), LH (308.5–461.0 pg/ml), estradiol‐17β (<62.6 pg/ml), and progesterone (145.0–453.0 pg/ml) remained low and were similar to the nadir levels observed during both the normal menstrual cycles and the nonbreeding season. Concentrations of ir‐inhibin, which is secreted from both follicles and corpus luteum in female Japanese monkeys, were also low (300.5–585.0 pg/ml). This strongly suggests that no follicular development occurs during lactation. Serum concentrations of cortisol (261.0–519 ng/ml) were higher during lactation than during the nonbreeding season. Since babies were often seen suckling their mothers during the study, the results indicate that the increased cortisol levels were associated with suckling‐induced secretion of corticotrophin‐releasing hormone (CRH) and adrenocorticotropic hormone (ACTH). The results of this study indicate that a long period of postpartum infertility in lactating Japanese monkeys, with apparent inhibition of follicle growth and anovulation, is due to weak gonadotropin stimulation, which may occur as the result of a suckling stimulus. Zoo Biol 22:65–76, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

15.
16.
This study was designed to determine the effect of the presence of a dominant follicle at the beginning of FSH stimulation on the morphological appearance and functional capacity of recruited follicles during FSH stimulation in cattle. Synchronized nonlactating dairy cows were assigned to 1 of 2 groups and treated with FSH in the presence (n = 5) or absence (n = 6) of a dominant follicle between Days 7 and 12 of the estrous cycle (Day 0 = estrus) to stimulate follicular growth. Dominant follicles were identified by daily ultrasonographic observations, beginning on Day 3 of the estrous cycle. Dominant follicle had an ultrasonographic diameter > or = 10 mm and were in a growing phase, or maintaining a constant diameter (> or = 10 mm) for less than 4 d. Ovaries were collected at slaughter on the morning of the third day following initiation of the FSH stimulation. All follicles > 2 mm were dissected, classified according to diameter (Class 1: 2 to 4.4 mm; Class 2: 4.5 to 7.9 mm; Class 3: > 8 mm), and incubated individually for 90 min in medium M-199 (37 degrees C, 5% CO2). Following incubation, integrity of each follicle was evaluated histologically to assess the level of atresia and biochemically to determine the in vitro release of estradiol (E2) and androstenedione in culture media. On Day 3 of the FSH treatment, mean number of follicles in each class was similar (P > 0.1) between the 2 groups. The percentage of atretic follicles in Classes 1 and 3 on Day 3 of the FSH stimulation did not differ (P > 0.1) between the 2 groups. However, the percentage of atretic follicles in Class 2 was higher (P < 0.005) in cows treated with FSH in presence than in absence of a dominant follicle (60.8 vs 38.2%). The release of E2 in culture media by small Class 1 atretic or healthy follicles, by Class 2 atretic and by Class 3 healthy follicles was not affected (P > 0.1) by the ovarian status. However (P < 0.001), the release of E2 in culture media of Class 2 healthy and Class 3 atretic follicles was less for follicles harvested from cows bearing than from those not bearing a dominant follicle. Within each follicular class, concentrations of androstenedione in the culture media did not differ between the 2 groups (P > 0.1). These results suggest that the presence of a dominant follicle at the beginning of FSH stimulation alters the population of follicles recruited FSH stimulation. This may be associated with the reported decrease of the superovulatory response in cows superovulated in presence of a dominant follicle.  相似文献   

17.
Generally, unilateral ovariectomy before a critical period in the latter part of the estrous cycle induces a transitory increase in plasma FSH, which causes subordinate follicles to develop and maintain ovulation rates characteristic of the species. A limiting period for subordinate follicles to assume dominance and from which ovulation occurs has not been shown for cattle. Growth and/or regression of subordinate follicles were characterized following removal of the dominant follicle at different days of the luteal phase of the estrous cycle in cattle in this study. In the mid-luteal phase (Day 13 or 15), the ovary with the dominant follicle of the second wave was ablated via unilateral ovariectomy; the corpus luteum also was removed. In the late luteal phase (Day 17 or 19), the dominant follicle was ablated with an ultrasonically guided 20 gauge needle. When the dominant follicle was removed on Day 13, the largest subordinate follicle of the second wave of follicular development became dominant and ovulation occurred from this follicle in 4 of 4 animals. However, when the dominant follicle was removed on Day 15, 17 or 19, a new wave of follicular development was induced in 14 of 15 animals. Moreover, the recovered subordinate follicle of the second wave of follicular development had similar growth characteristics to naturally occurring dominant follicles. In conclusion, the subordinate follicle in the second follicular wave in cattle retained the ability to become dominant, but this ability was lost by Day 15 of the estrous cycle. However, cattle then were able to maintain ovulation by developing a new wave of follicular growth.  相似文献   

18.
An experiment was conducted using 16 cyclic, Welsh Mountain ewes during the luteal phase of the estrous cycle to determine the effect of a 5-day period of feeding a high-energy high-protein diet (lupin grain; 500 g/day) on folliculogenesis and on the plasma concentrations of glucose, insulin, follicle stimulating hormone (FSH) and estradiol-17beta, and on the follicular fluid concentrations of glucose, inhibin A, estradiol-17beta, androstenedione and progesterone. Average weight did not differ between lupin-fed and control groups during the experiment. There was a trend for the number of small and large follicles to increase in the lupin-fed group. The plasma concentrations of glucose (P=0.012) and insulin (P=0.007) were higher during the feeding period in lupin-fed ewes. The plasma concentrations of FSH and estradiol-17beta were not significantly different. The mean follicular fluid concentration of glucose (small follicles; <3.5 mm) from lupin-fed ewes was elevated (P=0.010) and progesterone lowered (P=0.034) compared to controls. The follicular fluid concentrations of estradiol-17beta, androstenedione and inhibin A were not significantly different. The follicular fluid concentration of estradiol-17beta was positively correlated with androstenedione (r=-0.241; P=0.001) and inhibin A (r=0.734; P< or =0.001) and glucose was negatively correlated with inhibin (r=-0.241; P=0.01), but not estradiol (r=0.075; P=0.410) or androstenedione (r=0.050; P=0.564). The lupin grain supplement increased the number of follicles as expected, but this increase was not significant. These changes were reflected in follicular fluid where lupin feeding increased the concentration of glucose and decreased the concentration of progesterone in follicles less than 3.5mm in diameter. These data suggest that the local ovarian actions of nutrients have a role in the mediation of nutritional influences on folliculogenesis.  相似文献   

19.
The aim of this study was to characterize the immediate effects of heat stress on plasma FSH and inhibin concentrations, and its involvement in follicular dynamics during a complete oestrous cycle, and to examine a possible delayed effect of heat stress on follicular development. Holstein dairy cows were oestrous synchronized and randomly assigned to either cooled (n = 7) or heat-stressed (n = 6) treatment groups. During a complete oestrous cycle, control cows, which were cooled, maintained normothermia, whereas heat-stressed cows, which were exposed to direct solar radiation, developed hyperthermia. At the end of this oestrous cycle (treated cycle), both groups were cooled and maintained normothermia for the first 10 days of the subsequent oestrous cycle. Throughout this period, follicular development was examined by ultrasonography, and plasma samples were collected. During the second follicular wave of the treated oestrous cycle, a significantly larger cohort of medium sized follicles (6-9 mm) was found in heat-stressed cows than in cooled cows (P < 0.05). The enhanced growth of follicles in this wave in heat-stressed cows was associated with a higher plasma FSH increase which lasted 4 more days (days 8-13 of the oestrous cycle; P < 0.05), and coincided with a decrease in the plasma concentration of immunoreactive inhibin (days 5-18 of the oestrous cycle; P < 0.05). During the follicular phase (days 17-20 of the treated cycle), heat-stressed cows showed an increase in the number of large follicles (>/= 10 mm), and the preovulatory plasma FSH surge was significantly higher in heat-stressed cows than in cooled cows (P < 0.01). The effect of heat stress was also observed during the first follicular wave of the subsequent cycle: the postovulatory plasma FSH concentration was higher (P < 0.01), but fewer medium follicles developed, and the first follicular wave decreased at a slower rate in previously heat-stressed cows than in cooled cows (0.40 and 0.71 follicles per day, respectively). This study shows both immediate and delayed effects of heat stress on follicular dynamics, which were associated with high FSH and low inhibin concentrations in plasma. These alterations may have physiological significance that could be associated with low fertility of cattle during the summer and autumn.  相似文献   

20.
Inhibins and activins are firmly implicated in the control of pituitary FSH secretion and ovarian follicular development in mammals. As in mammals, inhibin A and activin A are expressed in the preovulatory follicles of birds, and a defined ovulation cycle for inhibin A has recently been demonstrated in the laying hen. To investigate further the role of inhibin-related proteins in developing pullets, circulating concentrations of inhibin A, inhibin B, total immunoreactive inhibin alpha-subunit (ir-alpha), activin A, LH, FSH, and progesterone were measured from the juvenile state through to sexual maturity in 22 birds. In the 11 birds assigned to control groups, plasma inhibin A levels were low from 7 to 13 wk of age rising about threefold to a peak at Week 19 after which levels fell slightly to a plateau level characteristic of adult hens. Plasma inhibin A levels were negatively correlated with FSH (r = -0. 33; P: < 0.001) and positively correlated with progesterone (r = 0. 67; P: < 0.001) and ir-alpha (r = 0.53; P: < 0.001). Plasma ir-alpha levels were much higher than inhibin A levels although the relative differences varied with age. Plasma levels of inhibin B and activin A were below assay detection limits at all times. The remaining group of 11 birds was actively immunized (IMM) against a synthetic chicken inhibin alpha-subunit peptide (amino acids 1-26). The IMM generated circulating antibodies that bound native bovine inhibin A but altered neither plasma FSH nor progesterone levels relative to control birds at any stage of development nor the timing of first oviposition in week 19. Apart from a transient decline 1 wk after primary IMM, plasma LH concentrations did not differ from controls. Comparison of the numbers and size-class distribution of ovarian follicles at 29 wk showed an approximate twofold increase in the number of 8- to 9.9-mm-diameter follicles (control; 1.82 +/- 0.44 vs. IMM; 3.91 +/- 0.89; P: < 0.05), a size class that corresponds to follicles that have just joined the preovulatory hierarchy. The numbers of growing follicles in other size-classes and the sizes of hierarchical F(1)-F(7) follicles were not altered by IMM. However, the number of postovulatory follicles increased (control 3.73 +/- 0. 20 vs. IMM 5.55 +/- 0.28; P: < 0.01), and significantly more (P: < 0. 02) immunized hens laid two eggs within a 24-h period on at least one occasion (control 1 of 11 vs. IMM 9 of 11). The IMM increased (P: < 0.05) activin A content of F(1) and F(2) theca layers and decreased (P: < 0.05) activin A content in F(3) and F(4) granulosa layers, raising the possibility of a local intraovarian role of activin in mediating the response to IMM. These findings support a role for inhibin A in regulating the entry of follicles into the preovulatory hierarchy in the chicken, although further studies are required to establish the mechanism by which inhibin IMM increases the rate of follicle selection and ovulation without raising plasma FSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号