首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
Spectral sensitivity functions were measured between 334 nm and 683 nm in Salamandra salamandra by utilizing two behavioral reactions: the negative phototactic response, and the prey catching behavior elicited by a moving worm dummy. The action spectrum of the negative phototactic response revealed 3 pronounced maxima: at 360–400 nm, at 520–540 nm, and at 600–640 nm. In the range around 450 nm, there was a reaction gap where sensitivity could not be measured. The action spectrum of the prey catching behavior was entirely different: maximal sensitivity was found at 500 nm and at 570 nm. Between 500 nm and 334 nm sensitivity decreased continuously for about 1 log unit (Fig. 6).Experiments under chromatic adaptation using the prey catching behavior indicate that the relatively high sensitivity in the ultraviolet range is not due to a separate ultraviolet photoreceptor, but is based on the responses of a photoreceptor maximally sensitive at about 500 nm.Color discrimination was tested by moving a colored worm dummy within a differently colored surround of equal subjective brightness. The salamanders were able to discriminate blue from green, and green from red (Fig. 10). The results can be explained by assuming a trichromatic color vision based on 3 photoreceptor types maximally sensitive around 450 nm, 500 nm and 570 nm (Fig. 12).  相似文献   

2.
1. Surface ecosystems provide the primary source of organic matter to many cave communities. Variation in the strength of connectivity to the surface suggests that some caves may be more resource‐limited than others. To test this, we examined diet, prey availability and production of an obligate cave salamander Gyrinophilus palleucus (Plethodontidae), a top predator, in two south‐eastern U.S.A. caves with different levels of organic matter (Tony Sinks cave, 165 g AFDM m?2; Bluff River cave, 62 g AFDM m?2). 2. We quantified density, biomass, growth rate, production and diet of G. palleucus monthly for 21 months. Diet composition, differences in prey communities and seasonal patterns in prey consumption were also analysed. 3. Salamander density, biomass and secondary production were significantly greater in the high organic matter cave (0.10 m?2, 0.18 g AFDM m?2, 0.12 g AFDM m?2 year?1) than in the low organic matter cave (0.03 m?2, 0.03 g AFDM m?2, 0.01 g AFDM m?2 year?1). Although growth rates were not statistically different between the two cave salamander populations, low recaptures probably influenced this result. 4. Isopoda prey were the major contributor to salamander production in the high organic matter cave (69%). In the low organic matter cave, production was provided by isopods (41%) and oligochaetes (20%). The lower number of prey taxa contributing to salamander production in the high organic matter cave suggests the ability to forage more selectively. 5. The differences in foraging strategy, density, biomass and secondary production were probably related to differences in the strength of surface connectivity, which controls organic matter supply. Links between basal resource level and top predator performance show the importance of bottom‐up limitation in the food webs of caves and other detritus‐based ecosystems.  相似文献   

3.
Summary The illumination level at which the pike (Esox lucius) eats most Leucaspius delineatus was compared to that at which the school of Leucaspius disperses.The pike easts Leucaspius predominantly when there is little light (50–75% of its entire prey at less than 1 Lux).The school of Leucaspius gradually disperses at less than 1 Lux.A comparison of the results shows that by and large the pike captures Leucaspius at illumination levels at which the school of Leucaspius is no longer completely unified.As both the ability of the pike to catch prey and of Leucaspius to form a school depend on the optic capabilities of the animals it can be supposed that the predator is optically superior to its prey at low illumination levels and profits from this advantage when catching its prey.With many thanks to Dr. G. Rüppell for his supervision of the work reported in this paper  相似文献   

4.
Summary The circadian rhythm of sensitivity in the median eyes ofAndroctonus australis L. can be entrained by exposure of the lateral eyes to a 24-h light-dark rhythm. Presentation of the Zeitgeber to only the anteriormost one of the lateral eyes sufficed (Fig. 1). However, with illumination of an entire group of lateral eyes (Fig. 2), entrainment was obtained at extremely low light intensities — white light at luminance levels of 10–4cd · m–2 (=2.5 · 10–4 lux, cf. Methods).The relatively less marked circadian rhythm of lateral-eye sensitivity is probably controlled via the optic nerve supplying these eyes (Fig. 4).Supported by the Deutsche Forschungsgemeinschaft (F1 77/5-6 and F1 77/7 Schwerpunktprogramm: Biologie der Zeitmessung)  相似文献   

5.
Summary Gynandromorphs with female XX-and male XO-areas result from the loss of an unstable ring-X-chromosome in the early cleavage mitoses of ring/rod-X-chromosome heterozygotes. The phenotypes of the recessive alleles on the rod-X-chromosome are expressed in the XO-areas.377 larval gynandromorphs of the genotypeR(1)2, In(1)w vC /y w sn3Iz50e mal were examined and scored for the phenotypes of 13 paired and 10 unpaired structures (Table 2, Fig. 2). This was possible mainly by the cell-autonomous expression of aldehyde oxidase activity in soft tissues and by the comparison of the distribution of enzyme activity in wildtype and gynander larvae. The distances between pairs of structures were calculated in sturt-units (Tables 3 and 4). A morphogenetic fate map with the presumptive areas of larval structures was constructed (Fig. 3). The relative positions of the structures agree well with Poulson's fate map (Fig. 4). In addition, the distribution of phenotypes was scored in 380 adult gynandromorphs Table (5). The fate map (Fig. 5) which was constructed from these data is very similar to the fate map of larval structures. This similarity becomes even more pronounced if fate maps are constructed which contain only structures analogous in larva and imago (Table 6, Fig. 6). Therefore an attempt was made to set up an integrated morphogenetic fate map containing the presumptive areas of both larval and imaginal structures (Fig. 7). The possibilities of further blastoderm mapping are discussed.
Herrn Prof. Dr. Dr. h. c. B. Rensch zum 75. Geburtstag gewidmet  相似文献   

6.
We have measured the critical flicker detection frequency (CFDF) and double pulse recognition threshold (DPT) using three LEDs with power peaks at 460, 525 and 625 nm for target illumination. Brightness equalization was performed by customized heterochromatic flicker photometry (cHFP). Reference luminance levels were 170 cd/m2 (blue LED, 60 subjects), 4 cd/m2 (green LED, 20 subjects), and 1 cd/m2 (green LED, 20 subjects). The measurement at 1 cd/m2 was preceded by 15 min of dark adaptation. The angle of view for the target was 3°, and the duration of stimuli was 1 ms. An experimental pulse generator with three channels and a projector was used. No differences in CFDF at different spectral properties of stimulus were observed at all three levels of luminance. Thus, it is concluded that temporal vision resolution does not depend on the spectral properties of visual stimuli.  相似文献   

7.
Summary The scorpionParuroctonus mesaensis locates prey by orienting to substrate vibrations produced by movements of the prey in sand. At the end of each walking leg of this scorpion there are two sense organs, the basitarsal compound slit sensillum and tarsal sensory hairs (Figs. 1, 3) that are excited by substrate vibrations conducted through sand. The slit sensilla appear to be most sensitive to surface (Rayleigh) waves while the tarsal sensory hairs respond best to compressional waves (Fig. 7). Both mechanoreceptors were activated by nearby disturbances of the substrate (Fig. 6) but only the slit sensilla responded to insects moving more than 15 cm away. Both receptors are highly sensitive to small amplitude (less than 10 Å) mechanical stimuli applied to the tarsus (Fig. 5).Behavioral studies of scorpions with ablated sense organs (Fig. 2) indicate that the basitarsal compound slit sensilla are necessary for determining vibration source direction.Abbreviation BCSS basitarsal compound slit sensillum (a) Supported by PHS Environmental Science and Regents Intern Fellowships (PB), and by intramural research funds from the University of California (RDF)  相似文献   

8.
Summary By extracellular recording from the neck connectives of free moving crickets potentials of large fibres can be obtained, which respond to substratum vibration. The most sensitive fibres which seem to be connected to the subgenual organs show an adaptation which can be modified by central or peripheral factors. The sensitivity of one fibre which was tested with a vibration platform of adjustable frequency and amplitude has a threshold of 0.2 to 0.3 cm/sec2 of acceleration at a frequency of 500 Hz (Fig. 4). These data correspond with the results of threshold measurements on the subgenual organs made by Autrum and Schneider (1948).

Die Untersuchungen wurden unterstützt durch Mittel der Deutschen Forschungsgemeinschaft, die Herrn Prof. Dr. F. Huber zur Verfügung standen.  相似文献   

9.
Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills (Alca torda,= 5, from Fair Isle, UK) and common guillemots (Uria aalge,= 2 from Fair Isle and = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive (= 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives (= 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.  相似文献   

10.
The permeation of K+ and Na+ through the pore of a K+ channel from the plasma membrane of rye roots was studied in planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers. The pore contains at least two ion-binding sites which can be occupied simultaneously. This was indicated by: (i) biphasic relationships with increasing cation concentration of both channel conductance at the zero-current (reversal) potential of the channel (E rev) and unitary-current at a specified voltage and (ii) a decline in E rev in the presence of equimolar Na+ (cis):K+ (trans) as the cation concentration was increased. To determine the spatial characteristics and energy profiles for K+ and Na+ permeation, unitary-current/ voltage data for the channel were fitted to a three energy-barrier, two ion-binding site (3B2S) model. The model allowed for simultaneous occupancy of binding sites and ionic repulsion within the pore, as well as surface potential effects. Results suggested that energy peaks and energy wells (ion binding sites) were situated asymmetrically within the electrical distance of the pore, the trans energy-well being closer to the center of the pore than its cis counterpart; that the energy profile for K+ permeation differed significantly from that of Na+ in having a higher cis energy peak and a deeper cis energy well; that cations repelled each other within the pore and that vestibule surface charge was negligible. The model successfully simulated various aspects of K+ and Na+ permeation including: (i) the complexities in current rectification over a wide range of contrasting ionic conditions; (ii) the biphasic relationships with increasing cation concentration of both channel conductance at E rev and unitary-current at a specified voltage; (iii) the decline in E rev in equimolar Na+ (cis):K+ (trans) as cation concentrations were increased and (iv) the complex relationships between mole fraction and E rev at total cation concentrations of 100 and 300 mm.We thank Prof. O. Alvarez (Universidad de Chile, Santiago, Chile) for supplying the computer program AJUSTE and Prof. D. Sanders (University of York, UK), Prof. D. Gradmann and Dr. G. Thiel (University of Göttingen, Germany) for stimulating ideas. This work was supported by the Agricultural and Food Research Council.  相似文献   

11.
Characteristic vibrational signals are suggested to be exchanged between the sexes during the spawning behavior in the himé salmon (landlocked red salmon, Oncorhynchus nerka). To check whether the lateral line is used to detect and process these vibrational signals, we examined how Co2+, which is known to block the mechano-electrical transduction in the lateral line detector, affects both the spawning behavior and lateral line response of the male himé salmon. The results showed that Co2+ blocked both the spawning behavior towards the vibrating model (Fig. 2) and the lateral line response to the vibrational stimuli (Figs. 5, 6), if the fish were forced to swim in the water containing 1.0 mM Co2+ for 1 to 1.5 h or longer in the presence of 0.25 mM Ca2+. 0.1 mM Co2+ had similar but weaker effects. These results indicate that the vibrational signals from the vibrating model are detected and processed by the lateral line system to elicit the spawning behavior. These are the first experimental evidences that the lateral line sense is involved in the communicational behavior of the fish.  相似文献   

12.
Myotis myotis can precisely locate and memorize sounds made by insects moving on the ground. Its competent approach even after an interval indicates an accurate short-term memory, important in catching prey and greatly influencing its distribution and abundance.  相似文献   

13.
Klaus Schmitz 《Planta》1970,92(3):208-221
Summary The petiole of Pelargonium zonale is traversed by 17 bundles, whose arrangement and form are typical for this plant. The bundles of the petiole are connected with the conducting system of the axis and with the main nerves by a system of phloem anastomoses in the leaf base and in the junction between the petiole and the leaf blade (Fig. 2). The anatomical findings were confirmed and extended by a study of the translocation of K-fluorescein and 14C. It could be shown that the metaphloem of the central petiole bundle is composed of phloem subunits, each of which is connected with the phloem of one certain main nerve only (Fig. 4). Accordingly, if fluorescein or 14CO2 is applied to one main nerve, the dye or 14C-material is translocated exclusively in a small phloem area of the central bundle. Autoradiograms of the petioles indicate that the 14C-labelled assimilates (sucrose, glucose, fructose and amino acids) are translocated exclusively in the phloem. A lateral movement of the labelled material within the petiole was not observed. The metaphloem of the central petiole bundle of Pelargonium zonale revealed a functional organization of phloem subunits.

Teil einer Dissertation unter der wissenschaftlichen Leitung von Prof. Dr. J. Willenbrink.  相似文献   

14.
Summary Evidence suggests that certain ras-related small molecular weight GTP-binding proteins (smg-proteins) are involved in intracellular membrane trafficking and vesicle fusion. We have previously shown that intravesicular acidification due to a vacuolar-type H+-ATPase, which is Cl dependent and highly sensitive to the specific inhibitor bafilomycin, enhances GTP-induced fusion of pancreatic microsomal vesicles (Hampe, W., Zimmermann, P., Schulz, I. 1990. FEBS Lett. 271:62–66). This process may involve function of smg-proteins. The present study shows that MgATP (2 mm), but neither MgATPS nor ATP in the absence of Mg2+, increases association of 19- and 21-kDa smg-proteins to the vesicle membrane as monitored by their [-32P]GTP binding. The affinity of smg-proteins for [-32P]GTP was not altered by MgATP. Bafilomycin B1 (10–8 m), the protonophore CCCP (10–5 m), and replacement of Cl in the incubation buffer by CH3COO or NO 3 resulted in an almost complete inhibition of the MgATP-dependent association of the 19- and 21-kDa smg-proteins to the vesicle membranes. Furthermore, the MgATP effect on both smg-proteins was found to be due to the intravesicular pH and not to the H+ gradient over the vesicle membrane. We conclude that association of a 19-kDa (immunologically identified as the ADP-ribosylation factor, arf) and a yet unidentified 21-kDa GTP-binding protein to vesicle membranes is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase.The arf-antibodies were kindly supplied by Dr. R.A. Kahn. We thank Prof. Dr. D. Gallwitz, Dr. R. Jahn, and Dr. E.G. Lapetina for kindly providing the ypt 1-, rab 3-, and rap 1-antibodies, respectively. ADP-ribosyltransferase C3 from Clostridium botulinum was kindly supplied by Prof. Dr. K. Aktories. This work was supported by the Jung-Stiftung für Wissenschaft und Forschung. S.Z. was supported by a grant of the Deutsche Forschungsgemeinschaft (Ze 237/3-1).  相似文献   

15.
16.
Leaf bearing stems ofCuratella americana L. were very susceptible to induced cavitation: embolisms began at a pressure of 0.5 MPa (15 %) and at 2.0 MPa most of the conductivity was lost (85 %). Nevertheless, in nature similar leaf specific conductivities, of about 90 x 10-5 kg m-2 s-1 MPa-1 during both wet and dry seasons indicated absence of drought induced embolisms. Leaf water potentials were neither very negative or considerably different between seasons but stomatal conductance decreased from 236 mmol m-2 s-1 measured during wet period to 100 mmol m-2 s-1 during drought season. Therefore, it was concluded thatCuratella had an accurate homeostatic balance of leaf water status to keep up xylem integrity. Acknowledgements: Financial support was provided by Decanato de Investigaciones - USB (S1-CB-811). Dr John Sperry (University of Utah) allowed me to learn how to use and to build the equipment used in this study. Mr. M. Edreida and Mr. T. Perez helped me in the field and in the laboratory, respectively. Dr D. HenrIquez corrected the English grammar.  相似文献   

17.
In the compound eye of the fly Musca, tiny pigment granules move within the cytoplasm of receptor cells Nos. 1–6 and cluster along the wall of the rhabdomeres under light adaptation, thus attenuating the light flux to which the visual pigment is exposed (Kirschfeld and Franceschini, 1969). Two recently developed optical methods (the neutralization of the cornea and the deep pseudopupil) combined with antidromic and orthodromic illumination of the eye (Fig. 1) make it possible to analyse the properties of the mechanism at the level of the single cell, in live and intact insects (Drosophila and Musca). The mechanism is shown to be an efficient attenuator in the spectral range (blue-green) where cells Nos. 1–6 have been reported to be maximally sensitive (Figs. 4c and d, 5b and 11b). In spite of the fact that the granules do not penetrate into the rhabdomere, the attenuation spectrum they bring about closely matches the absorption spectrum of the substance of which they are composed (ommochrome pigment, dotted curve in Fig. 11b). The dramatic increase in reflectance of the receptors after light adaptation (Figs. 3, 4b, 5a and 11a) can be explained as a mere by-product of the high absorption index of the ommochrome pigment, especially if one takes into account the phenomenon of anomalous dispersion (Chapter 8). The vivid green or yellow colour of the rhabdomeres would thus have a physical origin comparable to a metallic glint. Contrasting with the lens eye in which the pupillary mechanism is a common attenuator for both receptor types (rods and cones), the compound eye of higher Diptera is equiped with two types of pupils adapted respectively to both visual subsystems. A scotopic pupil is present in each of the six cells (Nos. 1–6) whose signals are gathered in a common cartridge of the first optic ganglion. This pupil comes into play at a moderate luminance (0,3 cd/m2 in Drosophila; 3 to 10 cd/m2 in Musca. Figs 13, 14, 15, 16). A photopic pupil is present in the central cell No. 7 whose signal reaches one column of the second optic ganglion. Attenuating the light flux for both central cells 7 and 8, the photopic pupil has its threshold about two decades higher than the scotopic pupil, just at the point where the latter reaches saturation (Fig. 3b, e-State II of Figs. 6b and 15). The photopic pupil itself saturates at a luminance one to two decades higher still (Fig. 3c, f=State III of Figs. 6c and 15). The two-decades-shift in threshold of these pupil-mechanisms supports the view that receptors 1–6 are a scotopic subsystem, receptors 7 and 8 a photopic subsystem of the dipteran eye. The luminance-threshold of the scotopic pupil (as determined with the apparatus described in Fig. 2) appears to be located at least 3.5 decades (Drosophila) or even 5 decades (Musca) higher than the absolute threshold of movement perception (Fig. 16). After a long period (1 hr) of darkness a light step of high intensity can close the scotopic pupil within about 10 sec (time constant 2 sec as in Fig. 9) and the photopic pupil within no less than 30–60 sec. Some mutants of Drosophila possess only a scotopic pupil (w , Figs. 4 and 5) whereas ommochrome deficient mutants lack both types of pupil (v, cn, see Fig. 7c, d). Comparable reflectance changes, accomplished within about 60 sec of light adaptation, are described for two insects having fused rhabdomes: the bee and the locust (Fig. 17).  相似文献   

18.
Photoinhibition and pigment composition of green stem tissues of field-grown adult Eucalyptus nitens were measured on clear spring days with low morning temperatures—conditions that cause photoinhibition in leaves of many plant species. The sun-exposed (north-facing) bark contained less chlorophyll a+b (531 vs 748 mol m–2), neoxanthin (29 vs 41), and -carotene (54 vs 73), more xanthophyll cycle pigments per unit surface area and per unit chlorophyll (71 vs 53 mol m–2 and 141 vs 66 mmol mol–1 chlorophyll), and less lutein per unit chlorophyll (239 vs 190) than the shaded (southern) side. Maximum electron flow rates were 60 mol m–2 s–1 on the sun-exposed side, and about 10 mol m–2 s–1 on the shaded side. Fv/Fm was always lower than 0.8 on the sun-exposed side and the de-epoxidation state (DEPS) of the xanthophyll cycle was dominated by zeaxanthin in midday samples. Fv/Fm increased quickly after darkening, but DEPS recovered more slowly to 40% overnight. This suggested that rapidly reversible pH-dependent quenching was responsible for the bulk of changes in PS II efficiency. Fv/Fm remained below 0.8 overnight, which may well be indicative of photo-damage to PSII. In contrast, DEPS of the shaded side was lower, and Fv/Fm was higher, than for the sun-exposed side. We conclude that E. nitens chlorenchyma on the sun-exposed stem side has a photosynthetic pigment composition similar to sun leaves and it experiences significant photoinhibition in the field.  相似文献   

19.

Small‐scale zooplankton swimming behaviors can affect aquatic predator‐prey interactions. Difficulties in controlling prey swimming behavior however, have restricted the ability to test hypotheses relating differences in small‐scale swimming behavior to frequency of predation by fish. We report here a Virtual Plankton (VP) system that circumvents this problem by allowing the observation of fish “preying"on computer‐generated prey images whose size, shape, color and swimming behavior can be precisely controlled. Two experiments were performed in which bluegill sunfish (Lepomis macrochirus) were given a choice of either two VP images, one of which moved twice as fast as the other, or six VP, one of which moved either faster (1.25 x, 1.5 x or 2 x ) or slower (0.5 x) than the other five. Current predator‐prey models based on encounter probabilities and prey visibility predict that moving faster increases predation risk and conversely, moving slower decreases predation risk. In agreement with existing predator‐prey models, in both experiments, fish chose faster moving VP significantly more often than their slower moving neighbors. Contrary to the predictions of existing models, in the second experiment with six VP, the rate at which fish chose a prey image moving half as fast as the five surrounding images did not differ significantly from the rate predicted by chance(l/6). These results suggest that current fish‐zooplankton predation models would benefit by the incorporation of small‐scale swimming behavior and assessments of its influence on overall prey visibility.  相似文献   

20.
Summary The structure of the rhinophore, digital tentacles, post-ocular tentacles and the eye of Nautilus macromphalus are described. The rhinophore is composed of mucous cells, ciliated cells, and flask-shaped ciliated cells. The latter are probably olfactory receptors. The digital tentacles are composed of mucous cells and pigmented cells. Motor-end-plates found in the muscle layer below the epithelium of the digital tentacles are similar to those described in other cephalopods. The post-ocular tentacle contains receptor cells that bear macrocilia. These may be mechanoreceptors. The retina is composed of retinula cells and supporting cells. A complex rhabdom is formed at the distal ends of the retinula cells. The supporting cells send processes up between these rhabdoms. Both types of cells contain pigment granules but the retinula cell has a complex membranous structure in its perikaryon. No synapses were found at the bases of the retinula cells. At the side of the retina are mucous cells that are presumed to produce the jelly-like substance that fills the inside of the eye in life. The likely function of the eye is discussed and it is suggested that it is capable of simple discriminations. It is suggested that the sense organs are probably comparatively unchanged from those of fossil nautiloids. Acknowledgements. This paper is dedicated to the late Dr. Yves Merlet who collected the nautiluses used in this study.We would like to thank Prof. J. Z. Young for all his support and encouragement. The Royal Society, The Percy Sladen Memorial Fund, and University College, London, provided the financial support that enabled one of us (V.C.B.) to collect nautiluses. The Science Research Council, U.K., provided the electron microscope used in the major part of the study and a grant to one of us (V.C.B.). We would also like to thank Prof. J. B. Gilpin-Brown who provided Fig. 1, Dr. R. Catala, for aquarium facilities, Mr. M. P. Legand and the Institut Français d'Oceanie, Noumea, New Caledonia, for laboratory facilities, Dr. J.-M. Bassot and Dr. Anna Bidder for advice on catching and preserving nautiluses, Mrs. Judy Parkes and Mr. M. Barker for photographic assistance, and Miss J. Date for secretarial assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号