首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of microperoxidase-11 (MP-11) as a heme–peptide enzyme model in oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied in the presence of amino acids, taking into account the inactivation of MP-11 during reaction by its suicide substrate, H2O2. Reliability of the kinetic equation was evaluated by non-linear mathematical fitting. Fitting of experimental data into a new integrated kinetic relation showed a close match between the kinetic model and the experimental data. Indeed, it was found that the mechanism of suicide-peroxide inactivation of MP-11 in the presence of amino acids is different from MP-11 and/or horseradish peroxidase. In this mechanism, amino acids compete with hydrogen peroxide for the sixth co-ordination position of iron atom in the heme group through a competitive inhibition mechanism.The proposed model can successfully determine the kinetic parameters including inactivation by hydrogen peroxide as well as the inhibitory rate constants by the amino acid inhibitor.Kinetic parameters of inactivation including the initial activity of MP-11, α0, the apparent inactivation rate constant, ki and the apparent inhibition rate constant for cysteine, kI were obtained 0.282 ± 0.006 min?1, 0.497 ± 0.013 min?1 and 1.374 ± 0.007 min?1 at [H2O2] = 1.0 mM, 27 °C, phosphate buffer 5.0 mM, pH 7.0. Results showed that inactivation and inhibition of microperoxidase as a peroxidase model enzyme occurred simultaneously even at low concentrations of hydrogen peroxide (0.4 mM). This kinetic analysis based on the suicide-substrate inactivation of microperoxidase-11, provides a tool and model for studying peroxidase models in the presence of reversible inhibitors. The introduced inhibition procedure can be used in designing activity tunable and specific protected enzyme models in the hidden and reversibly inhibited forms, which do not undergo inactivation.  相似文献   

2.
A non-modified and modified with NaOH and ethylenediamine ultrafiltration membranes prepared from AN copolymer have been used as carriers for the immobilization of horseradish peroxidase (HRP) enzyme. The amount of bound protein onto the membranes and the activity of the immobilized enzyme have been investigated as well as the pH and thermal optimum, and the thermal stability of the free and immobilized HRP. The experiments have proved that the modified membrane is a better support for the immobilization of HRP enzyme. The latter has shown a greater thermal stability than the free enzyme.A possible application has been studied for reducing phenol concentration in water solutions through oxidation of phenol by hydrogen peroxide, in the presence of free and immobilized HRP enzyme on modified AN copolymer membranes. A higher degree of the phenol oxidation has been observed in the presence of the immobilized enzyme. A total removal of phenol has been achieved in the presence of immobilized HRP at concentration of the hydrogen peroxide 0.5 mmol L?1 and concentration of the phenol in the model solutions within the interval 5–40 mg L?1. A high degree of phenol oxidation (95.4%) has been achieved in phenol solution with 100 mg L?1 concentration in the presence of hydrogen peroxide and immobilized HRP, which demonstrates the promising opportunity of using the enzyme for bioremediation of waste waters, containing phenol.The immobilized HRP has shown good operational stability. Deactivation of the immobilized enzyme to 50% of the initial activity has been observed after the 20th day of the enzyme operation.  相似文献   

3.
A series of tacrine–ebselen hybrids were synthesised and evaluated as possible multifunctional anti-Alzheimer’s disease (AD) agents. Compound 6i, which is tacrine linked with 5,6-dimethoxybenzo[d][1,2]selenazol-3(2H)-one by a six-carbon spacer, was the most potent acetylcholinesterase (AChE) and butylcholinesterase (BuChE) inhibitor, with IC50 values of 2.55 and 2.80 nM, respectively. Furthermore, this compound demonstrated similar hydrogen peroxide and peroxynitrite scavenging activity as ebselen by horseradish peroxidase assay and peroxynitrite scavenging activity assay, indicating that this hybrid is a good multifunctional drug candidate for the treatment of AD.  相似文献   

4.
Cai Z P  Huang W W  An M  Duan S S 《农业工程》2009,29(5):297-301
Effects of irradiance and iron on the growth of a typical harmful algal blooms (HABs) causative dinoflagellate, Scrippsiella trochoidea, were investigated under various irradiances (high light: 70 μmol m?2 s?1 and low light: 4 μmol m?2 s?1) and iron concentrations (low iron: 0.063 mg L?1, medium iron: 0.63 mg L?1 and high iron: 6.3 mg L?1), and evaluated by the parameters of algal cell density, specific growth rate, optical density and chlorophyll a content. The results indicated that there was significant difference in the cell density of dinoflagellate S. trochoidea between high light and low light intensity treatments across the entire experiments, 7-fold higher at high irradiance as compared with low irradiance, which was further enhanced by the iron concentration. It was found that the maximum cell density of 25 × 104 cell mL?1 occurred under the combination of high light intensity and high iron concentration, followed by 23 × 104 cell mL?1 in the combination of high light and medium iron, and 20 × 104 cell mL?1 in the combination of high light and low iron. There was no significant effect of iron concentration on the cell density under low light intensity. The cell density maintained about 3 × 104 cell mL?1 across all combinations of iron concentrations and low light in the end of experiments. Such interactive effects of light intensity and iron level dependent were also observed for the specific growth rate, OD680 and chlorophyll a content of S. trochoidea. The maximum values of specific growth rate, OD680 and chlorophyll a content peaked at the condition of high irradiance and high iron, which were 0.22 d?1, 0.282 and 0.673 mg L?1, respectively. In general, their values increased significantly with the increasing of iron concentration at high irradiance, whereas no significant difference was observed among three iron concentrations at low irradiance, all remaining approximately 0.06 d?1, 0.03 and 0.050 mg L?1, respectively. Those results suggest that there may be a strong interactive effect between irradiance and iron on microalgal growth and their physiological characteristics. The combination of high light and high iron concentration may accelerate algal cell growth and pigment biosynthesis, thus leading to massive occurrence of HABs.  相似文献   

5.
A chemiluminescent assay composed of TCPO [bis(2,4,6-trichlorophenyl)oxalate] and harmless rhodamine B is proposed to be superior in the determination of menadione-catalyzed hydrogen peroxide (H2O2) production by viable mammalian cells to that composed of TCPO and harmful pyrene [Anal. Biochem. 207 (1992) 255–260]. In tests, the proposed assay showed that the measurable concentration of H2O2 and the viable cell number ranged from 10?9 to 10?3 M and from 2 × 102 to 2 × 106 cells/100 μl/well in the presence of 10% bovine serum, respectively. The measuring time was approximately 10 min. On the other hand, the measurable cell numbers by the colorimetric WST-1 and MTT assays requiring several hours ranged only from 103 to 104 cells/100 μl/well and from 104 to 105 cells/100 μl/well, respectively. The cytotoxicity of sodium dodecyl sulfate was also observed at intervals of 1 min by the proposed assay, but not by the above colorimetric assays.  相似文献   

6.
A water-insoluble polysaccharide (PCS3-II) extracted from sclerotium of Poria cocos was identified as a linear (1  3)-β-d-glucan by 13C NMR and gas chromatography. Aqueous 0.5 M NaOH/0.2 M urea was a good solvent for PCS3-II and the dependence of intrinsic viscosity ([η]) on weight-average molecular weight (Mw) was established in the Mw range from 7.68 × 104 to 5.14 × 105 to be [η] = 3.39 × 10?2 MW0.62cm3g-1 at 25 °C by using laser light scattering and viscometry. The chain conformation parameters of PCS3-II in the 0.5 M NaOH/0.2 M urea solution was 2.3 (± 0.3) nm for persistence length (q), 580 g mol?1 nm?1 for molar mass per unit contour length (ML), 0.8 (± 0.2) nm for the diameter of the chain (d) and 3.63 for limited characteristic ratio (C). The results revealed, for the first time, that PCS3-II existed as a flexible chain in 0.5 M NaOH/0.2 M urea aqueous solution.  相似文献   

7.
We previously reported that high micromolar concentrations of nitric oxide were able to oxidize mitochondrial cytochrome c at physiological pH, producing nitroxyl anion (Sharpe and Cooper, 1998 Biochem. J. 332, 9–19). However, the subsequent re-evaluation of the redox potential of the NO/NO- couple suggests that this reaction is thermodynamically unfavored. We now show that the oxidation is oxygen-concentration dependent and non stoichiometric. We conclude that the effect is due to an oxidant species produced during the aerobic decay of nitric oxide to nitrite and nitrate. The species is most probably nitrogen dioxide, NO2? a well-known biologically active oxidant. A simple kinetic model of NO autoxidation is able to explain the extent of cytochrome c oxidation assuming a rate constant of 3 × 106 M-1 s-1 for the reaction of NO2? with ferrocytochrome c. The importance of NO2? was confirmed by the addition of scavengers such as urate and ferrocyanide. These convert NO2? into products (urate radical and ferricyanide) that rapidly oxidize cytochrome c and hence greatly enhance the extent of oxidation observed. The present study does not support the previous hypothesis that NO and cytochrome c can generate appreciable amounts of nitroxyl ions (NO- or HNO) or of peroxynitrite.  相似文献   

8.
Guldali O  Savci V  Buyukafsar K 《Life sciences》2011,88(11-12):473-479
AimsThis study aimed to investigate the effects of cytidine-5′-diphosphocholine (CDP-choline), an endogenous lipid precursor, on the reactivity of the mouse gastric fundus and to determine the mechanism(s) mediating its effects.Main methodsPossible contractile effect of CDP-choline (10? 5–10? 2 M) was investigated in the absence and presence of a muscarinic receptor antagonist, atropine (3 × 10? 6 M), an acetylcholine esterase inhibitor, physostigmine (10? 6 M), a Na+ channel blocker, tetrodotoxin (TTX, 3 × 10? 6 M), a Rho-kinase inhibitor, Y-27632 (10? 5 M), a purinoceptor antagonist, suramin (2 × 10? 4 M), a nitric oxide synthase inhibitor, NG-nitro-L-arginine (L-NA, 3 × 10? 4 M), a Ca2+ channel blocker, nifedipine (10? 6 M), an α7 nicotinic receptor antagonist, methyllycaconitine citrate (MLA, 10? 6 M) and a G protein (Gi/o) inhibitor, pertussis toxin (PTX, 2 μg/ml). The metabolites of CDP-choline, namely choline (10? 4–10? 2 M), cytidine 5′-triphosphate (CTP, 10? 5–10? 2 M), cytidine (10? 5–10? 2 M) and cytidine monophosphate (CMP, 10? 3–10? 2 M) were also tested. Besides, phosphorylation of MYPT1, which indicates Rho-kinase activity, was also detected.Key findingsCDP-choline produced contractions in a concentration-dependent manner. The contractions were not affected by atropine, physostigmine, TTX, PTX, MLA or L-NA. However, Y-27632, suramin or nifedipine partly reduced these contractions. CDP-choline increased phosphorylation of MYPT1. Among CDP-choline metabolites, cytidine had no contractile effects. However, choline induced considerable contractions, which were sensitive to atropine. CMP and CTP had also contractile activity, comparable to that of CDP-choline.SignificanceThese results suggest that CDP-choline produced contraction through, at least in part, purinoceptors and Rho/Rho-kinase signalling in the mouse gastric fundus.  相似文献   

9.
The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MHs) during concentric and eccentric contractions at ±180 and ±60° s?1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+180° s?1 p = 0.0036; +60° s?1 p = 0.0013; ?60° s?1 p = 0.0007; ?180° s?1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (?60° s?1 p = 0.0025; ?180° s?1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+180° s?1 p = 0.2208; +60° s?1 p = 0.0379; ?60° ?1 p = 0.0312; ?180° s?1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (?60° s?1 p = 0.0542; ?180° s?1 p = 0.0473). Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.  相似文献   

10.
Here we report the model studies of the reactions between NADH models (using HEH and BNAH) and sulfane sulfurs (using polysulfides). Such reactions could lead to the oxidation of NADH models and the production of hydrogen sulfide (H2S). Kinetics of the reaction between BNAH and elemental sulfur S8 were determined in ethanol and the second-order rate constant was found to be 0.074 M?1 min?1 (at 37 °C) suggesting this is a slow process.  相似文献   

11.
It is assumed that small herbivores produce negligible amounts of methane, but it is unclear whether this is a physiological peculiarity or simply a scaling effect. A respiratory chamber experiment was conducted with six rabbits (Oryctolagus cuniculus, 1.57 ± 0.31 kg body mass) and six guinea pigs (Cavia porcellus, 0.79 ± 0.07 kg) offered grass hay ad libitum. Daily dry matter (DM) intake and DM digestibility were 50 ± 6 g kg? 0.75 d? 1 and 55 ± 6% in rabbits and 59 ± 11 g kg? 0.75 d? 1 and 61 ± 3% in guinea pigs, respectively. Methane production was similar for both species (0.20 ± 0.10 L d? 1 and 0.22 ± 0.08 L d? 1) and represented 0.69 ± 0.32 and 1.03 ± 0.29% of gross energy intake in rabbits and guinea pigs, respectively. In relation to body mass (BM) guinea pigs produced significantly more methane. The data on methane per unit of BM obtained in this study and from the literature on the methane output of elephant, wallabies and hyraxes all lay close to a regression line derived from roughage-fed horses, showing an increase in methane output with BM. The regression, including all data, was nearly identical to that based on the horse data only (methane production in horses [L d? 1] = 0.18 BM [kg]0.97 (95%CI 0.92–1.02)) and indicates linear scaling. Because feed intake typically scales to BM0.75, linear scaling of methane output translates into increasing energetic losses at increasing BM. Accordingly, the data collection indicates that an increasing proportion of ingested gross energy is lost because relative methane production increases with BM. Different from ruminants, such losses (1%–2% of gross energy) appear too small in non-ruminant herbivores to represent a physiologic constraint on body size. Nevertheless, this relationship may represent a physiological disadvantage with increasing herbivore body size.  相似文献   

12.
An electrochemical immunosensing method was developed based on a magnetic nanocomposite. The multiwalled carbon nanotubes (MWCNTs) were treated with nitric acid to produce carboxyl groups at the open ends. Then, Fe3O4 nanoparticles were deposited on COOH–MWCNTs by chemical coprecipitation of Fe2+ and Fe3+ salts in an alkaline solution. Goat anti-human IgG (anti-hIgG) was covalently attached to magnetic nanocomposite through amide bond formation between the carboxylic groups of MWCNTs and the amine groups of anti-hIgG. The prepared bio-nanocomposite was used for electrochemical sensing of human tetanus IgG (hIgG) as a model antigen. The anti-hIgG magnetic nanocomposite was fixed on the surface of a gold plate electrode using a permanent magnet. The hIgG was detected using horseradish peroxidase (HRP)-conjugated anti-hIgG in a sandwich model. Electrochemical detection of hIgG was carried out in the presence of H2O2 and KI as substrates of HRP. Using this method, hIgG was detected in a concentration range from 30 to 1000 ng ml?1 with a correlation coefficient of 0.998 and a detection limit of 25 ng ml?1 (signal/noise = 3). The designed immunosensor was stable for 1 month.  相似文献   

13.
Brain mitochondria are not only major producers of reactive oxygen species but they also considerably contribute to the removal of toxic hydrogen peroxide by the glutathione (GSH) and thioredoxin-2 (Trx2) antioxidant systems. In this work we estimated the relative contribution of both systems and catalase to the removal of intrinsically produced hydrogen peroxide (H2O2) by rat brain mitochondria. By using the specific inhibitors auranofin and 1-chloro-2,4-dinitrobenzene (DNCB), the contribution of Trx2- and GSH-systems to reactive oxygen species (ROS) detoxification in rat brain mitochondria was determined to be 60 ± 20% and 20 ± 15%, respectively. Catalase contributed to a non-significant extent only, as revealed by aminotriazole inhibition. In digitonin-treated rat hippocampal homogenates inhibition of Trx2- and GSH-systems affected mitochondrial hydrogen peroxide production rates to a much higher extent than the endogenous extramitochondrial hydrogen peroxide production, pointing to a strong compartmentation of ROS metabolism. Imaging experiments of hippocampal slice cultures showed on single cell level substantial heterogeneity of hydrogen peroxide detoxification reactions. The strongest effects of inhibition of hydrogen peroxide removal by auranofin or DNCB were detected in putative interneurons and microglial cells, while pyramidal cells and astrocytes showed lower effects. Thus, our data underline the important contribution of the Trx2-system to hydrogen peroxide detoxification in rat hippocampus. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

14.
This work presents a kinetic approach of the interaction between acetylcholinesterase (AChE) from electric eel and aflatoxin B1 (AFB1) or its protein conjugate (e.g., AFB1–HRP [horseradish peroxidase]) in order to develop a simple and sensitive detection method of these compounds. The dissociation constant Kd of the AChE/AFB1–HRP interaction (0.4 μM) obtained with the surface plasmon resonance (SPR) technique is very close to the inhibition constant reported in amperometric assay (Ki = 0.35 μM), proving that the conjugation of AFB1 to a carrier protein does not significantly influence the affinity of AFB1 for AChE. Thus, the AChE/AFB1–HRP couple can be used as mimic system for the binding of AChE to other AFB1–protein adducts and further used for developing biosensors for AFB1 bound to plasma proteins. The immobilization protocol was designed to minimize the nonspecific adsorption on the self-assembled monolayer (SAM) functionalized surface of the SPR chip without an additional hydrophilic linker, whereas the interaction protocol was designed to mark out the possible occurrence of mass transport limitation (MTL) effects. The detection limits (LODs) were 0.008 μM for AFB1–HRP (2.5 ng ml?1 AFB1) and 0.94 ng ml?1 for AFB1 itself, which is lower than recently reported values in spectrophotometric and amperometric assays.  相似文献   

15.
A novel hydrogen peroxide biosensor was fabricated for the determination of H2O2. The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H2O2 in the linear range from 2.6 × 10 6 mol/L to 8.8 × 10 3 mol/L with a detection limit of 6.4 × 10 7 mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

16.
Harmful algal blooms caused by Cochlodinium polykrikoides are annual occurrences in coastal systems around the world. In New York (NY), USA, estuaries, bloom densities range from 103 to 105 mL?1 with higher densities (≥104 cells mL?1) being acutely toxic to multiple fish and shellfish species. Here, we report on the toxicity of C. polykrikoides strains recently isolated from New York and Massachusetts (USA) estuaries to juvenile fish (Cyprinodon variegates) and bay scallops (Argopecten irradians), as well as on potential mechanisms of toxicity. Cultures of C. polykrikoides exhibited dramatically more potent ichthyotoxicity than raw bloom water with 100% fish mortality occurring within ~1 h at densities as low as 3.3 × 102 cells mL?1. More potent toxicity in culture was also observed in bioassays using juvenile bay scallops, which experienced 100% mortality during 3 days exposure to cultures at cell densities an order of magnitude lower than raw bloom water (~3 × 103 cells mL?1). The toxic activity per C. polykrikoides cell was dependent on the growth stages of cultures with early exponential growth cultures being more potent than cultures in late-exponential or stationary phases. The ichthyotoxicity of cultures was also dependent on both cell density and fish size, as a hyperbolic relationship between the death time of fish and the ratio of algal cell density to length of fish was found (~103 cells mL?1 cm?1 yielded 100% fish mortality in 24 h). Simultaneous exposure of fish to C. polykrikoides and a second algal species (Rhodomonas salina or Prorocentrum minimum) increased survival time of fish, and decreased the fish mortality suggesting additional cellular biomass mitigated the ichthyotoxicity. Frozen and thawed-, sonicated-, or heat-killed-, C. polykrikoides cultures did not cause fish mortality. In contrast, cell-free culture medium connected to an active culture through a 5 μm nylon membrane caused complete mortality in fish, although the time required to kill fish was significantly longer than direct exposure to the whole culture. These results indicate that ichthyotoxicity of C. polykrikoides isolates is dependent on viability of cells and that direct physical contact between fish and cells is not required to cause mortality. The ability of the enzymes peroxidase and catalase to significantly reduce the toxicity of live cultures and the inability of hydrogen peroxide to mimic the ichthyotoxicity of C. polykrikoides isolates suggests that the toxicity could be caused by non-hydrogen peroxide, highly reactive, labile toxins such as ROS-like chemicals.  相似文献   

17.
The selenoprotein thioredoxin reductase 1 (TrxR1) has in recent years been identified as a promising anticancer drug target. A high-throughput assay for discovery of novel compounds targeting the enzyme is therefore warranted. Herein, we describe a single-enzyme, dual-purpose assay for simultaneous identification of inhibitors and substrates of TrxR1. Using this assay to screen the LOPAC1280 compound collection we identified several known inhibitors of TrxR1, thus validating the assay, as well as several compounds hitherto unknown to target the enzyme. These included rottlerin (previously reported as a PKCδ inhibitor and mitochondrial uncoupler) and the heme precursor protoporphyrin IX (PpIX). We found that PpIX was a potent competitive inhibitor of TrxR1, with a Ki = 2.7 μM with regard to Trx1, and in the absence of Trx1 displayed time-dependent irreversible inhibition with an apparent second-order rate constant (kinact) of (0.73 ± 0.07) × 10? 3 μM? 1 min? 1. Exogenously delivered PpIX was cytotoxic, inhibited A549 cell proliferation, and was found to also inhibit cellular TrxR activity. Hemin and the ferrochelatase inhibitor NMPP also inhibited TrxR1 and showed cytotoxicity, but less potently compared to PpIX. We conclude that rottlerin-induced cellular effects may involve targeting of TrxR1. The unexpected finding of PpIX as a TrxR1 inhibitor suggests that such inhibition may contribute to symptoms associated with conditions of abnormally high PpIX levels, such as reduced ferrochelatase activity seen in erythropoietic protoporphyria. Finally, additional inhibitors of TrxR1 may be discovered and further characterized based upon the new high-throughput TrxR1 assay presented here.  相似文献   

18.
MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial or poorly purified samples are able to perform O2·?dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in a SOD-deficient Escherichia coli model, whereas MnTE-2-PyP-treated SOD-deficient E. coli grew as well as a wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg MnTE-2-PyP and, to a slightly lesser extent, by 10 mg/kg of either MnTBAP. Also, 3-nitrotyrosine formation, an indication of peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exerts some protective actions in common with MnTE-2-PyP, which are not O2·? related and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOOCO2 adduct. The log kcat (O2·?) value for MnTBAP is estimated to be about 3.16, which is ~ 5 and ~ 6 orders of magnitude smaller than the SOD activities of the potent SOD mimic MnTE-2-PyP and Cu,Zn-SOD, respectively. This very low value indicates that MnTBAP is too inefficient at dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. The peroxynitrite scavenging ability of MnTBAP, however, is only ~ 2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in the commercial MnTBAP sample (log kred (ONOO?) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is > 1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the lower ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP) could arise from its impurities, which, by scavenging O2·?, reduce consequently the overall peroxynitrite and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable in distinguishing ONOO?/CO3·? from O2·? pathways.  相似文献   

19.
Carbon fiber microelectrodes and carbon fiber composite minielectrodes (CFM/CFCM) have been generally used for measurements of nitric oxide (NO) concentration in chemical and biological systems. The response time of a CFM/CFCM is usually from milliseconds to seconds depending on the electrode size, the thickness of coating layers on the electrode, and NO diffusion coefficients of the coating layers. As a result, the time course of recoded current changes (It curves) by the CFM/CFCM may be different from the actual time course of NO concentration changes (ct curves) if the half-life of NO decay is close to or shorter than the response time of the electrode used. This adds complexity to the process for determining rate constants of NO decay kinetics from the recorded current curves (It curves). By computer simulations based on a mathematical model, an approximation method was developed for determining rate constants of NO decay from the recorded current curves. This method was first tested and valuated using a commercial CFCM in several simple reaction systems with known rate constants. The response time of the CFCM was measured as 4.7 ± 0.7 s (n = 5). The determined rate constants of NO volatilization and NO autoxidation in our measurement system at 37 °C are (1.9 ± 0.1) × 10?3 s?1 (n = 4) and (2.0 ± 0.3) × 103 M?1 s?1 (n = 7), which are close to the reported rate constants. The method was then applied to determine the rate of NO decay in blood samples from control and smoking exposed mice. It was observed that the NO decay rate in the smoking group is >20% higher than that in control group, and the increased NO decay rate in the smoking group was reversed by 10 μM diphenyleneiodonium chloride (DPI), an inhibitor of flavin enzymes such as leukocyte NADPH oxidase.  相似文献   

20.
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na+/H+ exchanger isoform), after the acid load induced by NH4Cl, and on the cytosolic free calcium concentration ([Ca2+]i) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15 ± 0.008 and the basal pHirr was 0.195 ± 0.012 pH units/min (number of tubules/number of tubular areas = 16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10?12 M) increases the pHirr to approximately 59% of control value, and ALDO (10?6 M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10?6 M) or BAPTA (5 × 10?5 M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca2+]i was 104 ± 3 nM (15), and ALDO (10?12 or 10?6 M) increased the basal [Ca2+]i to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca2+]i and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca2+]i that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号