首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interplay between the amyloid-β (Aβ) peptide and cellular membranes have been proposed as an important mechanism for toxicity in Alzheimer's disease (AD). Membrane environments appear to influence Aβ aggregation and may stabilize intermediate Aβ oligomeric states that are considered to be neurotoxic. One important role for molecular biophysics within the field of Aβ studies is to characterize the structure and dynamics of the Aβ peptide in various states, as well as the kinetics of transfer between these states. Because biological cell membranes are very complex, simplified membrane models are needed to facilitate studies of Aβ and other amyloid proteins in lipid environments. In this review, we examine different membrane-mimetic systems available for molecular studies of Aβ. An introduction to each system is given, and examples of important findings are presented for each system. The benefits and drawbacks of each system are discussed from methodical and biological perspectives.  相似文献   

2.
3.
Using isobaric–isothermal replica exchange molecular dynamics and all-atom explicit water model we study the impact of Aβ monomer binding on the equilibrium properties of DMPC bilayer. We found that partial insertion of Aβ peptide into the bilayer reduces the density of lipids in the binding “footprint” and indents the bilayer thus creating a lipid density depression. Our simulations also reveal thinning of the bilayer and a decrease in the area per lipid in the proximity of Aβ. Although structural analysis of lipid hydrophobic core detects disordering in the orientations of lipid tails, it also shows surprisingly minor structural perturbations in the tail conformations. Finally, partial insertion of Aβ monomer does not enhance water permeation through the DMPC bilayer and even causes considerable dehydration of the lipid–water interface. Therefore, we conclude that Aβ monomer bound to the DMPC bilayer fails to perturb the bilayer structure in both leaflets. Limited scope of structural perturbations in the DMPC bilayer caused by Aβ monomer may constitute the molecular basis of its low cytotoxicity.  相似文献   

4.
The formation of amyloid-β peptide (Aβ) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of Aβ. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of Aβ-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various Aβ aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those Aβ peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the Aβ peptide to form nontoxic versus toxic species.  相似文献   

5.
The receptor binding surface of human follicle-stimulating hormone (hFSH) is mimicked by synthetic peptides corresponding to the hFSH-β chain amino acid sequences 33–53 [Santa-Coloma, T. A., Dattatreyamurty, D., and Reichert, L. E., Jr. (1990),Biochemistry 29, 1194–1200], 81–95 [Santa-Coloma, T. A., and Reichert, L. E., Jr. (1990),J. Biol. Chem. 265, 5037–5042], and the combined sequence (33–53)–(81–95) [Santa-Coloma, T. A., Crabb, J. W., and Reichert, L. E., Jr. (1991),Mol. Cell. Endocrinol. 78, 197–204]. These peptides have been shown to inhibit binding of hFSH to its receptor. Circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy were used to determine the structure of the first peptide in this series, the 21 amino acid peptide hFSH-β-(33–53), H2N-YTRDLVYKDPARPKIQKTCTF-COOH. Analysis of CD data indicated the presence of approximately equal amounts of antiparallel β-pleated sheet, turns including a β-turn, “other” structures, and a small amount ofa-helix. The major characteristics of the structure were found to be relatively stable at acidicpH and the predominant effect of increased solvent polarity was a small increase ina-helical content. One- and two-dimensional NMR techniques were used to obtain full proton and carbon signal assignments in aqueous solution atpH 3.1. Analysis of NMR results confirmed the presence of the structural features revealed by CD analysis and provided a detailed picture of the secondary structural elements and global folding pattern in hFSH-β-(33–53). These features included an antiparallel β-sheet (residues 38–51 and 46–48), turns within residues 41–46, and 50–52 (a β-turn) and a small N-terminal helical region comprised of amino acids 34–36. One of the turns is facilitated by prolines 42 and 45. Proline-45 was constrained to thetrans conformation, whereas proline-42 favored thetrans conformer (~70%) over thecis (~30%). Two resonances were observed for the single alanine residue (A-43) sequentially proximal to P-42, but the rest of the structure was minimally affected by the isomerization at proline-42. The major population of molecules, containingtrans-42 andtrans-45 prolines, presented 120 NOEs. Distance geometry calculations with 140 distance constraints and energy minimization refinements were used to derive a moderately well-defined model of the peptide's structure. The hFSH-β-(33–53) structure has a highly polar surface composed of six cationic amino acid (arginie-35, lysine-40, arginine-44, lysine-46, glutamine-48, and lysine-49) and two anionic residues (aspartate-36 and aspartic acid-41). A hydrophobic region in the structure is composed of residues in the antiparallel β-sheet and β-turn which fold to produce a distorted “hairpin.” The structure of this domain, together with the protruding and positively charged region in the vicinity of residues 42–45, may mimic the surface of hFSH that binds to the receptor.  相似文献   

6.
Signal peptides are selectively recognized and degraded by membrane associated proteases called as signal peptide peptidases. The hydrolysis of the signal peptide occurs only after its cleavage from the precursor. The possible reasons for this selectivity have been investigated. The results indicate that in signal peptides, leucine residues are clustered to a large extent on the same side of the membrane spanning alpha helix as the polar residues, but are distinctly separated along the length of the axis. Such topological differences in the distribution of amino acids on the surface of the membrane spanning alpha helix may play a crucial role in selective degradation of signal peptides.  相似文献   

7.
Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.  相似文献   

8.
9.
Alzheimer's disease involves progressive neuronal loss. Linked to the disease is the amyloid β (Aβ) peptide, a 38-43-amino acid peptide found in extracellular amyloid plaques in the brain. Cyclodextrins are nontoxic, cone-shaped oligosaccharides with a hydrophilic exterior and a hydrophobic cavity making them suitable hosts for aromatic guest molecules in water. β-Cyclodextrin consists of seven α-d-glucopyranoside units and has been shown to reduce the level of fibrillation and neurotoxicity of Aβ. We have studied the interaction between Aβ and a β-cyclodextrin dimer, consisting of two β-cyclodextrin monomers connected by a flexible linker. The β-cyclodextrin monomer has been found to interact with Aβ(1-40) at sites Y10, F19, and/or F20 with a dissociation constant (K(D)) of 3.9 ± 2.0 mM. Here (1)H-(15)N and (1)H-(13)C heteronuclear single-quantum correlation nuclear magnetic resonance (NMR) spectra show that in addition, the β-cyclodextrin monomer and dimer bind to the histidines. NMR translational diffusion experiments reveal the increased affinity of the β-cyclodextrin dimer (apparent K(D) of 1.1 ± 0.5 mM) for Aβ(1-40) compared to that of the β-cyclodextrin monomer. Kinetic aggregation experiments based on thioflavin T fluorescence indicate that the dimer at 0.05-5 mM decreases the lag time of Aβ aggregation, while a concentration of 10 mM increases the lag time. The β-cyclodextrin monomer at a high concentration decreases the lag time of the aggregation. We conclude that cyclodextrin monomers and dimers have specific, modulating effects on the Aβ(1-40) aggregation process. Transmission electron microscopy shows that the regular fibrillar aggregates formed by Aβ(1-40) alone are replaced by a major fraction of amorphous aggregates in the presence of the β-cyclodextrin dimer.  相似文献   

10.
beta-Amyloid (Aβ) is the primary protein component of senile plaques in Alzheimer's disease (AD) and is believed to play a role in its pathology. To date, the mechanism of action of Aβ in AD is unclear. We and others have observed that Aβ interacts either with or in the vicinity of the α6 sub-unit of integrin, and believe this may be important in its interaction with neuronal cells. In this study, we used confocal microscopy and flow cytometry to explore the residue specific interactions of Aβ40 with the cell surface and the α6 integrin receptor sub-unit. We probed the importance of the RHD sequence in Aβ40 and found that removal of the residues or their mutation using the Aβ8-40 or the D7N early onset AD sequence, respectively, led to a greater interaction between Aβ40 and an antibody bound to the α6-integrin sub-unit, as measured by fluorescence resonance energy transfer (FRET). These results suggest that the RHD sequence of Aβ40 does not mediate Aβ–α6 integrin interactions. However, the cyclic RGD mimicking peptide, Cilengitide, reduced the measured interaction between Aβ40 fibrils without the RHD sequence and an antibody bound to the α6-integrin sub-unit. We further probed the role of electrostatic forces on Aβ40–cell interactions and observed that the Aβ sequence that included the N-terminal segment of the peptide had reduced cellular binding at low salt concentrations, suggesting that its first 7 residues contribute to an electrostatic repulsion for the cell surface. These findings contribute to our understanding of Aβ–cell surface interactions and may provide insight into development of novel strategies to block Aβ–cell interactions that contribute to pathology in Alzheimer's disease.  相似文献   

11.
《Biophysical journal》2023,122(2):269-278
A significant feature of Alzheimer’s disease is the formation of amyloid deposits in the brain consisting mainly of misfolded derivatives of proteolytic cleavage products of the amyloid precursor protein amyloid-β (Aβ) peptide. While high-resolution structures already exist for both the monomer and the amyloid fibril of the Aβ peptide, the mechanism of amyloid formation itself still defies precise characterization. In this study, low and high molecular weight oligomers (LMWOs and HMWOs) were identified by sedimentation velocity analysis, and for the first time, the temporal evolution of oligomer size distributions was correlated with the kinetics of amyloid formation as determined by thioflavin T-binding studies. LMWOs of subnucleus size contain fewer than seven monomer units and exist alongside a heterogeneous group of HMWOs with 20–160 monomer units that represent potential centers of nucleus formation due to high local monomer concentrations. These HMWOs already have slightly increased β-strand content and appear structurally similar regardless of size, as shown by examination with a range of fluorescent dyes. Once fibril nuclei are formed, the monomer concentration begins to decrease, followed by a decrease in oligomer concentration, starting with LMWOs, which are the least stable species. The observed behavior classifies the two LMWOs as off pathway. In contrast, we consider HMWOs to be on-pathway, prefibrillar intermediates, representing structures in which nucleated conformational conversion is facilitated by high local concentrations. Aβ40 and Aβ42 M35ox take much longer to form nuclei and enter the growth phase than Aβ42 under identical reaction conditions, presumably because both the size and the concentration of HMWOs formed are much smaller.  相似文献   

12.
The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer's disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-crystallin binds to wild-type Aβ42 fibrils with micromolar affinity, and also binds to fibrils formed from the E22G Arctic mutation of Aβ42. Immunoelectron microscopy confirms that binding occurs along the entire length and ends of the fibrils. Investigations into the effect of αB-crystallin on the seeded growth of Aβ fibrils, both in solution and on the surface of a quartz crystal microbalance biosensor, reveal that the binding of αB-crystallin to seed fibrils strongly inhibits their elongation. Because the lag phase in sigmoidal fibril assembly kinetics is dominated by elongation and fragmentation rates, the chaperone mechanism identified here represents a highly effective means to inhibit fibril proliferation. Together with previous observations of αB-crystallin interaction with α-synuclein and insulin fibrils, the results suggest that this mechanism is a generic means of providing molecular chaperone protection against amyloid fibril formation.  相似文献   

13.
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease(AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein(PrP~C ) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrP~C contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrP~C , which lead to high affinity binding between Aβ oligomers and PrP~C . The interaction between PrP~C and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system(CNS). Thus, silencing PrP~C expression may turn out be an effective treatment for PrP~C dependent AD.  相似文献   

14.
The possible modes of binding of kojibiose, nigerose, maltose and ManPα(1 → 2)Man to concanavalin A have been investigated using computer modelling studies. While α12 linked disaccharides bind to concanavalin A in two modes,i.e. by placing the reducing as well as non-reducing sugar units in the sugar binding site, nigerose or maltose can bind only in one mode,i.e. by placing the non-reducing sugar unit in the binding site. Though, both the sugar residues in α 12 linked disaccharides can reach the binding site, the preference is high for the non-reducing unit. When the non-reducing residue, in any of these disaccharides, enters the binding site, the allowed orientations and the possible hydrogen bonds with the protein seem to be independent of the glycosidic linkage. However, the number of hydrogen bonds the outward sugar residue forms with the protein are dependent on the type of linkage. Atleast one of the hydroxyl groups adjacent to the glycosidic linkage on the outward sugar residue is involved in the formation of a hydrogen bond with the protein suggesting the presence of an extended binding site. The orientation of the reducing sugar residue in the extended binding site is dependent on the linkage. Its orientation in nigerose is flipped when compared to that found in kojibiose or maltose leading to different non-covalent interactions with the protein which affect their binding affinities.  相似文献   

15.
Wu C  Bowers MT  Shea JE 《Biophysical journal》2011,100(5):1316-1324
Pittsburgh compound B (PIB) is a neutral derivative of the fluorescent dye Thioflavin T (ThT), which displays enhanced hydrophobicity and binding affinity to amyloid fibrils. We present molecular dynamics simulations of binding of PIB and ThT to a common cross-β-subunit of the Alzheimer Amyloid-β peptide (Aβ). Our simulations of binding to Aβ(9-40) protofibrils show that PIB, like ThT, selectively binds to the hydrophobic or aromatic surface grooves on the β-sheet surface along the fibril axis. The lack of two methyl groups and charge in PIB not only improves its hydrophobicity but also leads to a deeper insertion of PIB compared to ThT into the surface grooves. This significantly increases the steric, aromatic, and hydrophobic interactions, and hence leads to stronger binding. Simulations on protofibrils consisting of the more-toxic Aβ(17-42) revealed an additional binding mode in which PIB and ThT insert into the channel that forms in the loop region of the protofibril, sandwiched between two sheet layers. Our simulations indicate that the rotation between the two ring parts of the dyes is significantly more restricted when the dyes are bound to the surface of the cross-β-subunits or to the channel inside the Aβ(17-42) cross-β-subunit, compared with free solution. The specific conformations of the dyes are influenced by small chemical modifications (ThT versus PIB) and by the environment in which the dye is placed.  相似文献   

16.
17.
18.
A pathological hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β peptides (Aβ) into fibrils, leading to deposits in cerebral parenchyma and vessels known as cerebral amyloid angiopathy (CAA). Platelets are major players of hemostasis but are also implicated in AD. Recently we provided strong evidence for a direct contribution of platelets to AD pathology. We found that monomeric Aβ40 binds through its RHDS sequence to integrin αIIbβ3, and promotes the formation of fibrillar Aβ aggregates by the secretion of adenosine diphosphate (ADP) and the chaperone protein clusterin (CLU) from platelets. Here we investigated the molecular mechanisms of Aβ binding to integrin αIIbβ3 by using Aβ11 and Aβ16 peptides. These peptides include the RHDS binding motif important for integrin binding but lack the central hydrophobic core and the C-terminal sequence of Aβ. We observed platelet adhesion to truncated N-terminal Aβ11 and Aβ16 peptides that was not mediated by integrin αIIbβ3. Thus, no integrin outside-in signaling and reduced CLU release was detected. Accordingly, platelet mediated Aβ fibril formation was not observed. Taken together, the RHDS motif of Aβ is not sufficient for Aβ binding to platelet integrin αIIbβ3 and platelet mediated Aβ fibril formation but requires other recognition or binding motifs important for platelet mediated processes in CAA. Thus, increased understanding of the molecular mechanisms of Aβ binding to platelet integrin αIIbβ3 is important to understand the role of platelets in amyloid pathology.  相似文献   

19.
Dynamic Nuclear Polarization solid-state NMR holds the potential to enable a dramatic increase in sensitivity by exploiting the large magnetic moment of the electron. However, applications to biological solids are hampered in uniformly isotopically enriched biomacromolecules due to line broadening which yields a limited spectral resolution at cryogenic temperatures. We show here that high magnetic fields allow to overcome the broadening of resonance lines often experienced at liquid nitrogen temperatures. For a fibril sample of the Alzheimer’s disease β-amyloid peptide, we find similar line widths at low temperature and at room temperature. The presented results open new perspectives for structural investigations in the solid-state.  相似文献   

20.
Amyloid-β (Aβ) peptide is central to the development of brain pathology in Alzheimer disease (AD) patients. Association with receptors for advanced glycation end-products (RAGE) enables the transport of Aβ peptide from circulating blood to human brain, and also causes the activation of the NF-κB signaling pathway. Here we show that two β-strands of RAGE participate in the interaction with Aβ peptide. Serial deletion analysis of the RAGE V domain indicates that the third and eighth β-strands are required for interaction with Aβ peptide. Site-directed mutagenesis of amino acids located in the third and eighth β-strands abolish the interaction of RAGE with Aβ peptide. Wild-type RAGE activates the NF-κB signaling pathway in response to Aβ peptide treatment, while a RAGE mutant defective in Aβ binding does not. Furthermore, use of peptide for the third β-strand or a RAGE monoclonal antibody that targets the RAGE–Aβ interaction interface inhibited transport of the Aβ peptide across the blood brain barrier in a mice model. These results provide information crucial to the development of RAGE-derived therapeutic reagents for Alzheimer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号