首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.  相似文献   

2.
The interacting pathways for prevention and repair of oxidative DNA damage   总被引:22,自引:0,他引:22  
  相似文献   

3.
4.
Trypanosoma cruzi, a parasitic protozoan, is the etiological agent of Chagas disease, an endemic and neglected pathology in Latin America. It presents a life cycle that involves a hematophagous insect and man as well as domestic and wild mammals. The parasitic infection is not eliminated by the immune system of mammals; thus, the vertebrate host serves as a parasite reservoir. Additionally, chronic processes leading to dysfunction of the cardiac and digestive systems are observed. To establish a chronic infection some parasites should resist the oxidative damage to its DNA exerted by oxygen and nitrogen free radicals (ROS/RNS) generated in host cells. Till date there are no reports directly showing oxidative DNA damage and repair in T. cruzi. We establish that ROS/RNS generate nuclear and kinetoplastid DNA damage in T. cruzi that may be partially repaired by the parasite. Furthermore, we determined that both oxidative agents diminish T. cruzi cell viability. This effect is significantly augmented in parasites subsequently incubated with methoxyamine, a DNA base excision repair (BER) pathway inhibitor, strongly suggesting that the maintenance of T. cruzi viability is a consequence of DNA repair mechanisms.  相似文献   

5.
6.
Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects include neurocognitive dysfunction and peripheral neuropathy. These symptoms occur frequently and have not been effectively studied at the cellular or molecular level. Studies of DNA repair may help our understanding of how those cells that are not dividing could succumb to neurotoxicity with the clinical manifestations discussed in the following article.  相似文献   

7.
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.  相似文献   

8.
Base excision repair (BER) is an evolutionarily conserved DNA repair pathway that is critical for repair of many of the most common types of DNA damage generated both by endogenous metabolic pathways and exposure to exogenous stressors such as pollutants. Caenorhabditis elegans is an increasingly important model organism for the study of DNA damage-related processes including DNA repair, genotoxicity, and apoptosis, but BER is not well understood in this organism, and has not previously been measured in vivo. We report robust BER in the nuclear genome and slightly slower damage removal from the mitochondrial genome; in both cases the removal rates are comparable to those observed in mammals. However we could detect no deficiency in BER in the nth-1 strain, which carries a deletion in the only glycosylase yet described in C. elegans that repairs oxidative DNA damage. We also failed to detect increased lethality or growth inhibition in nth-1 nematodes after exposure to oxidative or alkylating damage, suggesting the existence of at least one additional as-yet undetected glycosylase.  相似文献   

9.
Mitochondrial DNA repair of oxidative damage in mammalian cells   总被引:9,自引:0,他引:9  
Bohr VA  Stevnsner T  de Souza-Pinto NC 《Gene》2002,286(1):127-134
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed.  相似文献   

10.
Eimeria bovis and Toxoplasma gondii differ in their susceptibility to macrophages activated by lymphokines. Interferon-gamma can activate macrophages to totally inhibit E. bovis sporozoite development, whereas growth of T. gondii tachyzoites in macrophages is not totally affected. The susceptibility of these parasites to oxygen intermediates and their ability to evade the oxidative burst by macrophages were investigated in cell-free systems. Using a logistic model to assess growth inhibition, T. gondii growth was impaired by 50% at 10(-4.25) M (56 microM) H2O2, with 30 min as the optimum time for measuring inhibition. Preliminary results indicate that T. gondii follows mode-one and mode-two killing with relation to time after exposure to H2O2, implying a role for OH. and the induction of a DNA repair mechanism. The same model was used to assess inhibition of E. bovis growth that was more susceptible, being inhibited to 50% by 10(-5) M (10 microM) H2O2. Both parasites were susceptible to the effects of xanthine-xanthine oxidase that releases a full complement of oxygen intermediates (H2O2, OH., (1)O2, and O2-). Adding quenchers or scavengers to the system confirmed that T. gondii was susceptible to products of the interaction of O2- and H2O2 (OH. and (1)O2), and that E. bovis sporozoites were at least partially susceptible to H2O2 and O2-, but extremely susceptible to OH.. These data were supported by studies on scavenging enzymes present in the parasites. Toxoplasma gondii was rich in superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPO), and E. bovis had less catalase and SOD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 microM and its direct metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 microM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin.  相似文献   

12.
Base excision repair (BER) is a very important repair mechanism to cope with oxidative DNA damage. One of the most predominating oxidative DNA damages after exposure to ionizing radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This damage is repaired by formamidopyrimidine-DNA glycosylase (Fpg), a DNA glycosylase which is part of BER. Correct repair of 8oxoG is of great importance for cells, because 8oxoG has strong miscoding properties. Mispairing of 8oxoG with adenine instead of cytosine results in G:C to T:A transversion mutations. To determine the effect of a Fpg-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene, double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target, was irradiated with gamma-rays in aqueous solution under oxic conditions. Subsequently, the DNA was transfected into a wild-type Escherichia coli strain (JM105) and an isogenic Fpg-deficient E. coli strain (BH410). Although the overall spontaneous mutation spectra between JM105 and BH410 seemed similar, remarkable differences could be observed when the individual base pair substitutions were viewed. The amount of C to A transversions, which are most probably caused by unrepaired 8oxoG, has increased 3. 5-fold in the spontaneous BH410 spectrum. When the gamma-radiation-induced mutation spectra of JM105 and BH410 were compared, there was even a larger increase of C to A transversions in the BH410 strain (7-fold). We can therefore conclude that the straightforward approach used in this study confirms the importance of Fpg in repair of gamma-radiation-induced damage, and most probably especially in the repair of 8oxoG.  相似文献   

13.
Wilson DM  Bohr VA 《DNA Repair》2007,6(4):544-559
Base excision repair (BER) is the major pathway responsible for averting the mutagenic and cytotoxic effects of spontaneous hydrolytic, oxidative, and non-enzymatic alkylation DNA damage. In particular, this pathway recognizes and repairs base modifications, such as uracil and 8-hydroxyguanine, as well as abasic sites and DNA single-strand breaks. In this review, we outline the basic mechanics of the BER process, and describe the potential association of this pathway with aging and age-related disease, namely cancer and neurodegeneration.  相似文献   

14.
Numerous human pathologies result from unrepaired oxidative DNA damage. Base excision repair (BER) is responsible for the repair of oxidative DNA damage that occurs in both nuclei and mitochondria. Despite the importance of BER in maintaining genomic stability, knowledge concerning the regulation of this evolutionarily conserved repair pathway is almost nonexistent. The Saccharomyces cerevisiae BER protein, Ntg1, relocalizes to organelles containing elevated oxidative DNA damage, indicating a novel mechanism of regulation for BER. We propose that dynamic localization of BER proteins is modulated by constituents of stress response pathways. In an effort to mechanistically define these regulatory components, the elements necessary for nuclear and mitochondrial localization of Ntg1 were identified, including a bipartite classical nuclear localization signal, a mitochondrial matrix targeting sequence and the classical nuclear protein import machinery. Our results define a major regulatory system for BER which when compromised, confers a mutator phenotype and sensitizes cells to the cytotoxic effects of DNA damage.  相似文献   

15.
The central nervous system (CNS) of the intermediate host plays a central role in the lifelong persistence of Toxoplasma gondii as well as in the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised patients. In order to analyze the parasite-host interaction within the CNS, the host cell invasion, the intracellular replication, and the stage conversion from tachyzoites to bradyzoites was investigated in mixed cultures of dissociated CNS cells from cortices of Wistar rat embryos. Two days post infection (p.i.) with T. gondii tachyzoites, intracellular parasites were detected within neurons, astrocytes, and microglial cells as assessed by double immunofluorescence and confocal microscopy. Quantitative analyses revealed that approximately 10% of neurons and astrocytes were infected with T. gondii, while 30% of the microglial cells harbored intracellular parasites. However, the replication of T. gondii within microglial cells was considerably diminished, since 93% of the parasitophorous vacuoles (PV) contained only one to two parasites which often appeared degenerated. This toxoplasmacidal activity was not abrogated after treatment with NO synthase inhibitors or neutralization of IFN-gamma production. In contrast, 30% of the PV in neurons and astrocytes harbored clearly proliferating parasites with at least four to eight parasites per vacuole. Four days p.i. with tachyzoites of T. gondii, bradyzoites were detected within neurons, astrocytes, and microglial cells of untreated cell cultures. However, the majority of bradyzoite-containing vacuoles were located in neurons. Spontaneous differentiation to the bradyzoite stage was not inhibited after addition of NO synthase inhibitors or neutralization of IFN-gamma. In conclusion, our results indicate that intracerebral replication of T. gondii as well as spontaneous conversion from the tachyzoite to the bradyzoite stage is sustained predominantly by neurons and astrocytes, whereas microglial cells may effectively inhibit parasitic growth within the CNS.  相似文献   

16.
DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer risk and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.  相似文献   

17.
Host base excision repair (BER) proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1) and mutY homolog (MYH) as well as DNA polymerase beta (Polβ). While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5′dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggeted Polβ DNA synthesis activity is not necessary while 5′dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.  相似文献   

18.
Base excision repair (BER) is a very important repair mechanism to remove oxidative DNA damage. A major oxidative DNA damage after exposure to ionizing radiation is 7,8-dihydro-8-oxoguanine (8oxoG). 8oxoG is a strong mutagenic lesion, which may cause G:C to T:A transversions if not repaired correctly. Formamidopyrimidine-DNA glycosylase (Fpg), a repair enzyme which is part of BER, is the most important enzyme to repair 8oxoG. In the past years, evidence evolved that nucleotide excision repair (NER), a repair system originally thought to repair only bulky DNA lesions, can also repair some oxidative DNA damages. Examples of DNA damages which are recognized by NER are thymine glycol and abasic sites (AP sites). The main objective of this study is to determine if NER can act as a backup system for the repair of spontaneous and gamma-radiation-induced damages when Fpg is deficient. For that purpose, the effect of a NER-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene was determined, using double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target sequence. Subsequently the DNA was transfected into a fpg(-)uvrA(-) Escherichia coli strain (BH420) and the mutational spectra were compared with the spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105), which were determined in an earlier study. Furthermore, to examine effects which are caused by UvrA-deficiency, and not by Fpg-deficiency, the spontaneous and gamma-radiation-induced mutation spectra of an E. coli strain in which only UvrA is deficient (BH430) were also determined and compared with a wild type E. coli strain (JM105). The results of this study indicate that if only UvrA is deficient, there is an increase in spontaneous G:C to T:A transversions as compared to JM105 and a decrease in A:T to G:C transitions. The gamma-radiation-induced mutation spectrum of BH420 (fpg(-)uvrA(-)) shows a significant decrease in G:C to A:T and G:C to T:A mutations, as compared to BH410 where only Fpg is deficient. Based on these results, we conclude that in our experiments NER is not acting as a backup system if Fpg is deficient. Instead, NER seems to make mistakes, leading to the formation of mutations.  相似文献   

19.
The biological mechanisms responsible for aging remain poorly understood. We propose that increases in DNA damage and mutations that occur with age result from a reduced ability to repair DNA damage. To test this hypothesis, we have measured the ability to repair DNA damage in vitro by the base excision repair (BER) pathway in tissues of young (4-month-old) and old (24-month-old) C57BL/6 mice. We find in all tissues tested (brain, liver, spleen and testes), the ability to repair damage is significantly reduced (50-75%; P<0.01) with age, and that the reduction in repair capacity seen with age correlates with decreased levels of DNA polymerase beta (beta-pol) enzymatic activity, protein and mRNA. To determine the biological relevance of this age-related decline in BER, we measured spontaneous and chemically induced lacI mutation frequency in young and old animals. In line with previous findings, we observed a three-fold increase in spontaneous mutation frequency in aged animals. Interestingly, lacI mutation frequency in response to dimethyl sulfate (DMS) does not significantly increase in young animals whereas identical exposure in aged animals results in a five-fold increase in mutation frequency. Because DMS induces DNA damage processed by the BER pathway, it is suggested that the increased mutagenicity of DMS with age is related to the decline in BER capacity that occurs with age. The inability of the BER pathway to repair damages that accumulate with age may provide a mechanistic explanation for the well-established phenotype of DNA damage accumulation with age.  相似文献   

20.
Wong HK  Kim D  Hogue BA  McNeill DR  Wilson DM 《Biochemistry》2005,44(43):14335-14343
Base excision repair (BER) is the major corrective pathway for most spontaneous, oxidative, and alkylation DNA base and sugar damage. X-ray cross-complementing 1 (XRCC1) has been suggested to function at nearly every step of this repair process, primarily through direct protein-protein interactions. Using whole cell extract (WCE) repair assays and DNA damage measurement techniques, we examined systematically the quantitative contribution of XRCC1 to specific biochemical steps of BER and single-strand break repair (SSBR). Our studies reveal that XRCC1-deficient Chinese hamster ovary WCEs exhibit normal base excision activity for 8-oxoguanine (8-OH-dG), 5-hydroxycytosine, ethenoadenine, and uracil lesions. Moreover, XRCC1 mutant EM9 cells possess steady-state levels of endogenous 8-OH-dG base damage similar to those of their wild-type counterparts. Abasic site incision activity was found to be normal in XRCC1-deficient cell extracts, as were the levels of abasic sites in isolated chromosomal DNA from mutant cells. While one- and five-nucleotide gap filling was not affected by XRCC1 status, a significant approximately 2-4-fold reduction in nick ligation activity was observed in EM9 WCEs. Our results herein suggest that the primary biochemical defect associated with XRCC1 deficiency is in the ligation step of BER/SSBR, and that XRCC1 plays no significant role in endogenous base damage and abasic site repair, or in promoting the polymerase gap-filling step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号