首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Pregnancy malaria is caused by Plasmodium falciparum -infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistant to placental malaria as antibodies are acquired which specifically target the surface of infected erythrocytes binding in the placenta. VAR2CSA is most likely the parasite-encoded protein which mediates binding to the placental receptor CSA. Several domains have been shown to bind CSA in vitro; and it is apparent that a VAR2CSA-based vaccine cannot accommodate all the CSA binding domains and serovariants. It is thus of high priority to define minimal ligand binding regions throughout the VAR2CSA molecule.

Methods

To define minimal CSA-binding regions/peptides of VAR2CSA, a phage display library based on the entire var2csa coding region was constructed. This library was screened on immobilized CSA and cells expressing CSA resulting in a limited number of CSA-binding phages. Antibodies against these peptides were affinity purified and tested for reactivity against CSA-binding infected erythrocytes.

Results

The most frequently identified phages expressed peptides residing in the parts of VAR2CSA previously defined as CSA binding. In addition, most of the binding regions mapped to surface-exposed parts of VAR2CSA. The binding of a DBL2X peptide to CSA was confirmed with a synthetic peptide. Antibodies against a CSA-binding DBL2X peptide reacted with the surface of infected erythrocytes indicating that this epitope is accessible for antibodies on native VAR2CSA on infected erythrocytes.

Conclusion

Short continuous regions of VAR2CSA with affinity for multiple types of CSA were defined. A number of these regions localize to CSA-binding domains and to surface-exposed regions within these domains and a synthetic peptide corresponding to a peptide sequence in DBL2 was shown to bind to CSA and not to CSC. It is likely that some of these epitopes are involved in native parasite CSA adhesion. However, antibodies directed against single epitopes did not inhibit parasite adhesion. This study supports phage display as a technique to identify CSA-binding regions of large proteins such as VAR2CSA.  相似文献   

2.
This study aimed to develop a single-round multiplex PCR method for the identification of Anopheles minimus complex (An. minimus and Anopheles harrisoni) and Anopheles aconitus subgroup (An. aconitus and Anopheles varuna), and for the simultaneous detection of Plasmodium falciparum and Plasmodium vivax in these vectors. Five primers were created for a single-round multiplex PCR assay to identify four anopheline mosquitoes combined with three Plasmodium primers for the detection of P. falciparum and P. vivax in vectors. The four species of anopheline vectors and two Plasmodium species, P. falciparum and P. vivax, could be identified by the combination of eight primers in the single-round multiplex PCR assay. The amplified species-specific products were 380 bp for An. minimus, 180 bp for An. harrisoni, 150 bp for An. aconitus, 310 bp for An. varuna, 276 bp for P. falciparum, and 300 bp for P. vivax. The sensitivities were 0.5 pg/μl (25 sporozoites/μl) for P. falciparum DNA and between 0.5 and 5 pg/μl (25–250 sporozoites/μl) for P. vivax DNA. Furthermore, this developed method could be used to identify field caught An. minimus complex, An. aconitus subgroup from Thailand and Lao PDR. Also, it was successfully used to identify the species An. minimus, An. harrisoni, An. aconitus and An. varuna and to detect and identify P. falciparum and P. vivax in caught anopheline mosquitoes. The sensitivity of this method was high for simultaneous detection of P. falciparum and P. vivax in anopheline mosquitoes.  相似文献   

3.
4.
Two expert research microscopists, each blinded to the other's reports, diagnosed single-species malaria infections in 2,141 adults presenting at outpatient malaria clinics in Tak Province, Thailand, and Iquitos, Peru, in May-August 1998, May-July 1999, and May-June 2001. Plasmodium vivax patients with gametocytemia had higher fever and higher parasitemia than those without gametocytemia; temperature correlated with parasitemia in the patients with gametocytemia. Plasmodium falciparum patients with gametocytemia had lower fever than those without gametocytemia, but similar parasitemia; temperature correlated with parasitemia in the patients without gametocytemia. Hematologic data in Thailand in 2001 showed lower platelet counts in P. vivax patients with gametocytemia than in the P. vivax patients without gametocytemia, whereas P. falciparum patients with gametocytemia had similar platelet counts but lower red blood cell counts, hemoglobin levels, hematocrit levels, and higher lymphocyte counts than patients without gametocytemia.  相似文献   

5.
The susceptibility of Anopheles aquasalis (F3 generation) and An. darlingi (F1 generation) to Plasmodium vivax circumsporozoite protein phenotypes from a limited number of blood samples of malaria patients in Belém, state of Pará, Brazil, was examined A polymerase chain reaction was used to determine the P. vivax phenotypes in blood samples and the blood-fed infected mosquitoes were dissected and tested by ELISA. In all patient infections, more infected An. aquasalis and An. darlingi were positive for VK210 compared with VK247.  相似文献   

6.

Background

The question whether Plasmodium falciparum infection affects the fitness of mosquito vectors remains open. A hurdle for resolving this question is the lack of appropriate control, non-infected mosquitoes that can be compared to the infected ones. It was shown recently that heating P. falciparum gametocyte-infected blood before feeding by malaria vectors inhibits the infection. Therefore, the same source of gametocyte-infected blood could be divided in two parts, one heated, serving as the control, the other unheated, allowing the comparison of infected and uninfected mosquitoes which fed on exactly the same blood otherwise. However, before using this method for characterizing the cost of infection to mosquitoes, it is necessary to establish whether feeding on previously heated blood affects the survival and fecundity of mosquito females.

Methods

Anopheles gambiae M molecular form females were exposed to heated versus non-heated, parasite-free human blood to mimic blood meal on non-infectious versus infectious gametocyte-containing blood. Life history traits of mosquito females fed on blood that was heat-treated or not were then compared.

Results

The results reveal that heat treatment of the blood did not affect the survival and fecundity of mosquito females. Consistently, blood heat treatment did not affect the quantity of blood ingested.

Conclusions

The study indicates that heat inactivation of gametocyte-infected blood will only inhibit mosquito infection and that this method is suitable for quantifying the fitness cost incurred by mosquitoes upon infection by P. falciparum.  相似文献   

7.
This study deals with five species of the Barbirostris Complex of Anopheles subgenus Anopheles that are known to occur in Thailand. Three new species of the complex, A nopheles dissidens sp. nov. , A nopheles saeungae sp. nov. , and A nopheles wejchoochotei sp. nov. , are characterized and compared with Anopheles barbirostris van der Wulp and Anopheles campestris Reid based on specimens of molecularly identified progeny broods. For practical purposes, the five species are essentially isomorphic and can only be unequivocally identified from diagnostic mitochondrial and ribosomal DNA sequences. Based on overall morphological similarity, An. campestris is considered to be a member of the Barbirostris Complex rather than a separate member of the Barbirostris Subgroup. The molecular data, mitotic karyotypes, bionomics, and distributions of the species are reviewed and discussed. It is concluded that integrated molecular epidemiological studies of the complex throughout the Oriental Region are needed to unambiguously elucidate the individual species and their relation to disease. © 2015 The Linnean Society of London  相似文献   

8.

Background

The population dynamics of Plasmodium sporogony within mosquitoes consists of an early phase where parasite abundance decreases during the transition from gametocyte to oocyst, an intermediate phase where parasite abundance remains static as oocysts, and a later phase where parasite abundance increases during the release of progeny sporozoites from oocysts. Sporogonic development is complete when sporozoites invade the mosquito salivary glands. The dynamics and efficiency of this developmental sequence were determined in laboratory strains of Anopheles dirus, Anopheles minimus and Anopheles sawadwongporni mosquitoes for Plasmodium vivax parasites circulating naturally in western Thailand.

Methods

Mosquitoes were fed blood from 20 symptomatic Thai adults via membrane feeders. Absolute densities were estimated for macrogametocytes, round stages (= female gametes/zygotes), ookinetes, oocysts, haemolymph sporozoites and salivary gland sporozoites. From these census data, five aspects of population dynamics were analysed; 1) changes in life-stage prevalence during early sporogony, 2) kinetics of life-stage formation, 3) efficiency of life-stage transitions, 4) density relationships between successive life-stages, and 5) parasite aggregation patterns.

Results

There was no difference among the three mosquito species tested in total losses incurred by P. vivax populations during early sporogony. Averaged across all infections, parasite populations incurred a 68-fold loss in abundance, with losses of ca. 19-fold, 2-fold and 2-fold at the first (= gametogenesis/fertilization), second (= round stage transformation), and third (= ookinete migration) life-stage transitions, respectively. However, total losses varied widely among infections, ranging from 6-fold to over 2,000-fold loss. Losses during gametogenesis/fertilization accounted for most of this variability, indicating that gametocytes originating from some volunteers were more fertile than those from other volunteers. Although reasons for such variability were not determined, gametocyte fertility was not correlated with blood haematocrit, asexual parasitaemia, gametocyte density or gametocyte sex ratio. Round stages and ookinetes were present in mosquito midguts for up to 48 hours and development was asynchronous. Parasite losses during fertilization and round stage differentiation were more influenced by factors intrinsic to the parasite and/or factors in the blood, whereas ookinete losses were more strongly influenced by mosquito factors. Oocysts released sporozoites on days 12 to 14, but even by day 22 many oocysts were still present on the midgut. The per capita production was estimated to be approximately 500 sporozoites per oocyst and approximately 75% of the sporozoites released into the haemocoel successfully invaded the salivary glands.

Conclusion

The major developmental bottleneck in early sporogony occurred during the transition from macrogametocyte to round stage. Sporozoite invasion into the salivary glands was very efficient. Information on the natural population dynamics of sporogony within malaria-endemic areas may benefit intervention strategies that target early sporogony (e.g., transmission blocking vaccines, transgenic mosquitoes).  相似文献   

9.
The aim of the present study was to investigate antimalarial drug pressure resulting from the clinical use of different antimalarials in Thailand. The phenotypic diversity of the susceptibility profiles of antimalarials, i.e., chloroquine (CQ), quinine (QN), mefloquine (MQ), and artesunate (ARS) in Plasmodium falciparum isolates collected during the period from 1988 to 2003 were studied. P. falciparum isolates from infected patients were collected from the Thai-Cambodian border area at different time periods (1988-1989, 1991-1992, and 2003), during which 3 different patterns of drug use had been implemented: MQ + sulphadoxine (S) + pyrimethamine (P), MQ alone and MQ + ARS, respectively. The in vitro drug susceptibilities were investigated using a method based on the incorporation of [3H] hypoxanthine. A total of 50 isolates were tested for susceptibilities to CQ, QN, MQ, and ARS. Of these isolates, 19, 16, and 15 were adapted during the periods 1988-1989, 1991-1993, and 2003, respectively. P. falciparum isolates collected during the 3 periods were resistant to CQ. Sensitivities to MQ declined from 1988 to 2003. In contrast, the parasite was sensitive to QN, and similar sensitivity profile patterns were observed during the 3 time periods. There was a significantly positive but weak correlation between the IC50 values of CQ and QN, as well as between the IC50 values of QN and MQ. Drug pressure has impact on sensitivity of P. falciparum to MQ. A combination therapy of MQ and ARS is being applied to reduce the parasite resistance, and also increasing the efficacy of the drug.  相似文献   

10.
11.
Transposon-mediated transformation was used to produce Anopheles stephensi that express single-chain antibodies (scFvs) designed to target the human malaria parasite, Plasmodium falciparum. The scFvs, m1C3, m4B7, and m2A10, are derived from mouse monoclonal antibodies that inhibit either ookinete invasion of the midgut or sporozoite invasion of salivary glands. The scFvs that target the parasite surface, m4B7 and m2A10, were fused to an Anopheles gambiae antimicrobial peptide, Cecropin A. Previously-characterized Anopheles cis-acting DNA regulatory elements were included in the transgenes to coordinate scFv production with parasite development. Gene amplification and immunoblot analyses showed promoter-specific increases in transgene expression in blood-fed females. Transgenic mosquito lines expressing each of the scFv genes had significantly lower infection levels than controls when challenged with P. falciparum.  相似文献   

12.
Four Plasmodium species cause malaria in humans, Plasmodium falciparum being the most widely studied to date. All Plasmodium species have paired club-shaped organelles towards their apical extreme named rhoptries that contain many lipids and proteins which are released during target cell invasion. P. falciparum RhopH3 is a rhoptry protein triggering important immune responses in patients from endemic regions. It has also been shown that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes. Recent immunisation studies in mice with the Plasmodium yoelii and Plasmodium berghei RhopH3 P. falciparum homologue proteins found that they are able to induce protection in murine models. This study described identifying and characterising RhopH3 protein in Plasmodium vivax; it is encoded by a seven exon gene and expressed during the parasite's asexual stage. PvRhopH3 has similar processing to its homologue in P. falciparum and presents a cellular immunolocalisation pattern characteristic of rhoptry proteins.  相似文献   

13.
Anopheles tessellatus mosquitoes ingested Plasmodium vivax gametocytes in human erythrocytes suspended in rabbit sera with and without anti-mosquito midgut antibodies. When the mosquito bloodmeal contained anti-midgut antibodies, fewer oocysts of P. vivax developed on the mosquito midgut and the proportion of mosquitoes becoming infected was significantly reduced. Complement inactivated serum also reduced the infection rate and load. A second bloodmeal containing anti-midgut antibodies, given 48 or 72 h later, did not enhance the transmission-blocking effect. IgG purified from antimidgut sera was shown to mediate the transmission-blocking effect.  相似文献   

14.
15.

Background

Mortality from severe pediatric falciparum malaria appears low in Oceania but Plasmodium vivax is increasingly recognized as a cause of complications and death. The features and prognosis of mixed Plasmodium species infections are poorly characterized. Detailed prospective studies that include accurate malaria diagnosis and detection of co-morbidities are lacking.

Methods and Findings

We followed 340 Papua New Guinean (PNG) children with PCR-confirmed severe malaria (77.1% P. falciparum, 7.9% P. vivax, 14.7% P. falciparum/vivax) hospitalized over a 3-year period. Bacterial cultures were performed to identify co-incident sepsis. Clinical management was under national guidelines. Of 262 children with severe falciparum malaria, 30.9%, 24.8% and 23.2% had impaired consciousness, severe anemia, and metabolic acidosis/hyperlactatemia, respectively. Two (0.8%) presented with hypoglycemia, seven (2.7%) were discharged with neurologic impairment, and one child died (0.4%). The 27 severe vivax malaria cases presented with similar phenotypic features to the falciparum malaria cases but respiratory distress was five times more common (P = 0.001); one child died (3.7%). The 50 children with P. falciparum/vivax infections shared phenotypic features of mono-species infections, but were more likely to present in deep coma and had the highest mortality (8.0%; P = 0.003 vs falciparum malaria). Overall, bacterial cultures were positive in only two non-fatal cases. 83.6% of the children had alpha-thalassemia trait and seven with coma/impaired consciousness had South Asian ovalocytosis (SAO).

Conclusions

The low mortality from severe falciparum malaria in PNG children may reflect protective genetic factors other than alpha-thalassemia trait/SAO, good nutrition, and/or infrequent co-incident sepsis. Severe vivax malaria had similar features but severe P. falciparum/vivax infections were associated with the most severe phenotype and worst prognosis.  相似文献   

16.
Variation in susceptibility of the vector Anopheles stephensi Liston to the human malaria parasite Plasmodium falciparum (Welch) was demonstrated using twelve strains of mosquitoes and one strain of parasites cultured in vitro. The Beech strain of An. stephensi exhibited greatest natural refractoriness, but with high intrapopulation variability. By selection for the required characteristic, two refractory lines of the Punjab strain and one highly susceptible line of the Sind strain were obtained. The median number of oocysts in the two refractory lines was less than 4% of that in the unselected line, whilst the highly susceptible line yielded about twice as many oocysts as the unselected line. Selection progressed more by keeping the descendants of individual females separate and selecting between them (individual selection) rather than pooling the progeny of all selected mosquitoes (mass selection). Using the former procedure many lines were lost due to inbreeding depression, but the outcome was more successful.  相似文献   

17.
We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum , using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of F1-crosses and backcrosses show that refractoriness to P. falciparum in our A. stephensi line is autosomal and semi-dominant to susceptibility. The expression of refractoriness is apparently affected by a cytoplasmic factor. Interpretation of data from the crosses by quantitative trait locus analysis shows that one gene or two unlinked interacting autosomal genes, or groups of closely linked genes, are involved.  相似文献   

18.
The 3 laboratory-colonized malaria vectors, i.e., Anopheles stephensi, An. sundaicus, and An. fluviatilis, were studied for their comparative susceptibility to Plasmodium vivax sporogony. There was no significant difference in oocyst and sporozoite recruitment by these 3 species, whereas the geometric mean (GM) of the oocyst number per midgut was significantly lower in An. fluviatilis as compared with that in the other 2 species. There was no difference in the GM of oocyst between An. stephensi and An. sundaicus. Adaptability to laboratory conditions and susceptibility to plasmodial infection suggest that An. fluviatilis and An. sundaicus can also be used as a vector model for vector-parasite interaction studies.  相似文献   

19.
20.

Background

Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.

Methods

A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.

Results

The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.

Conclusions

A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread to this location from its site of origin in western Cambodia. Resistance containment efforts are underway in Myanmar.

Trial Registration

Australian New Zealand Clinical Trials Registry ACTRN12610000896077  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号