首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In erythrocytes, 4.1R80 (80 kDa isoform of protein 4.1R) binds to the cytoplasmic tail of the transmembrane proteins band 3 and GPC (glycophorin C), and to the membrane-associated protein p55 through the N- (N-terminal), α- (α-helix-rich) and C- (C-terminal) lobes of R30 [N-terminal 30 kDa FERM (4.1/ezrin/radixin/moesin) domain of protein 4.1R] respectively. We have shown previously that R30 binds to CaM (calmodulin) in a Ca2+-independent manner, the equilibrium dissociation constant (Kd) for R30-CaM binding being very similar (in the submicromolar range) in the presence or absence of Ca2+. In the present study, we investigated the consequences of CaM binding on R30's structural stability using resonant mirror detection and FTIR (Fourier-transform IR) spectroscopy. After a 30 min incubation above 40° C, R30 could no longer bind to band 3 or to GPC. In contrast, R30 binding to p55, which could be detected at a temperature as low as 34° C, was maintained up to 44° C in the presence of apo-CaM. Dynamic light scattering measurements indicated that R30, either alone or complexed with apo-CaM, did not aggregate up to 40° C. FTIR spectroscopy revealed that the dramatic variations in the structure of the β-sheet structure of R30 observed at various temperatures were minimized in the presence of apo-CaM. On the basis of Kd values calculated at various temperatures, ΔCp and ΔG° for R30 binding to apo-CaM were determined as -10 kJ · K(-1) · mol-1 and ~ -38 kJ · mol(-1) at 37° C (310.15 K) respectively. These data support the notion that apo-CaM stabilizes R30 through interaction with its β-strand-rich C-lobe and provide a novel function for CaM, i.e. structural stabilization of 4.1R80.  相似文献   

2.
SnRK1 is a protein kinase complex that is involved in several aspects of plant growth and development. There are published data indicative of a participation of SnRK1 in the regulation of the synthesis and degradation of starch, although the molecular mechanism is not known. In this work, we performed electron microscopy to explore the in vivo localization of the regulatory and catalytic subunits that constitute the SnRK1 complex. The results indicated that all the subunits are present in the chloroplast and, in particular, the SnRK1 βγ and SnRK1 β3 subunits are associated with starch. Furthermore, the regulatory subunits bind maltose, a relevant product of starch degradation. The kinase activity of immunoprecipitated complexes containing the βγ regulatory subunit was positively regulated by maltose only in the complexes obtained from Arabidopsis leaves collected at dusk. Recombinant complexes with the SnRK1α1 catalytic subunit, SnRK1βγ and three different β subunits showed that maltose only had an effect on a complex formed with the β3 subunit. Truncation of the CBM domain form SnRK1 βγ abolished the maltose activation of the complex and the activity was significantly reduced, indicating that the CBM is a positive regulator of SnRK1. A model of the SnRK1α1/βγ/β3 complex suggests the presence of two putative maltose‐binding sites, both involving ligand interactions with the βγ subunit and the α subunit.  相似文献   

3.
Both of the two forms of glucoamylase (glucoamylases I and II) from the wheat bran culture of Mucor rouxianus hydrolyzed amylopectin, amylose, glycogen, soluble starch, maltotriose, and maltose, but did not act on isomaltose and isomaltotriose. Phenyl α-maltoside was hydrolyzed into glucose and phenyl α-glucoside by both glucoamylases. Maltose was hydrolyzed about one-fifth as rapidly as amylopectin. Both enzymes produced glucose from amylopectin, amylose, glycogen, soluble starch in the yields of almost complete hydrolysis. They hydrolyzed amylose with the inversion of configuration, producing the β-anomer of glucose. Glucoamylase II hydrolyzed raw starch at 3-fold higher rate than glucoamylase I. The former hydrolyzed rice starch almost completely into glucose, whereas the latter hydrolyzed it incompletely (nearly 50%).  相似文献   

4.
Infrared spectroscopy of human amyloid fibrils and immunoglobulin proteins   总被引:3,自引:0,他引:3  
The presence of the antiparallel-β-pleated sheet coformation io isolated human amyloid protein fibrils has been confirmed by infrared spectroscopy. In most amyloid samples, this conformation was enhanced by acidic solution conditions. Infrared spectroscopy (Amide I and Amide V absorption bands) and x-ray diffraction methods were also used to examine the immunoglobulin molecule for solid state-β-structure. It was found that both heavy chains and Bence Jones proteins exhibited some β-pleated sheet content upon acid and/or heat treatment. Furthermore, pepsin digests comprising either the variable-rich region (Fd′) of the immunloglobulin heavy chain or in particular, filamentous variable segments of κ and λ Bence Jones proteins were, as isolated, very similar to amyloid in β-structure content. Data from other immunoglobulin-derived sample did not exhibit extensive β-pleated sheet content. On the other hand, most amyliod and immunoglobulin-derived samples did display some β-structure when cast from 50% HCOOH solution. Under these conditions, however, filamentous light chain-variable segments exhibited well-defined infrared patterns rich in antiparallel-β-pleated sheet structure and gave a “cross-β” x-ray diffraction pattern.  相似文献   

5.
The starch binding domain of α-amlylase from moderate halophile was expressed in E. coli with His tag (His- SBD12) and characterized for its halophilic properties. His-SBD12 was stable up to 35°C and showed binding activity, although at reduced level, to amylose even in the absence of NaCl. Both NaCl and specific ligands exhibited insignificant influence on the secondary structure of His-SBD12, but showed significant stabilization effects against thermal unfolding concentration-dependently, showing its halophilic properties. NaCl increased thermal stability of His-SBD12 by 4°C at 0.2 M and 15°C at 2 M, and enhanced refolding rate by ~7-fold at 0.2 M and ~170-fold at 2 M. Its specific ligands, β- cyclodextrin (at 3 mM) and maltose (at 470 mM), also stabilized the protein by 11° C, most likely reflecting affinity difference between these two ligands. However, they showed marginal effects on refolding rate. These observations suggest that although binding of NaCl and specific ligands to the native structure can explain their stabilization effects on His- SBD12, it is not a sole factor for modulating their effects on folding of His-SBD12.  相似文献   

6.
以A.niger来源的果胶酶为材料,经过CM-SephadexC-50及SephadexG-100两步骤分离纯化得到电泳均一的endo-PG1及endo-PG2,其亚基分子量分别为35kD及37kD,含糖量为11.22%及8.3%,最大紫外吸收峰分别在274nm及269nm处,氨基酸组成分析结果表明Gly含量较高,Met含量较低,不含Cys,并且酸性氨基酸含量高于碱性氨基酸,圆二色谱结果表明二级结构主要为α螺旋和β折叠,其中endo-PG1含α螺旋45.1%,β折叠24.9%;endo-PG2含α螺旋39.6%,β折叠36.5%。  相似文献   

7.
Wang N  Zhang Y  Wang Q  Liu J  Wang H  Xue Y  Ma Y 《Biotechnology journal》2006,1(11):1258-1265
A gene encoding an extracellular alpha-amylase (AmyA) was cloned from the alkaliphilic bacterium Alkalimonas amylolytica by enzymatic activity screening in Escherichia coli DH5alpha. The gene amyA consists of 1764 base pairs and was predicted to encode a 587-amino acid protein encompassing a 31-amino acid signal peptide. In addition, a 459-amino acid catalytic domain and a 97-amino acid starch-binding domain (SBD) were found. The SBD showed little similarity to other known SBDs; instead, it contains conserved amino acids typically belonging to the carbohydrate-binding module (CBM) family 20. AmyA could act on both granular and gelatinized starch. The catalytic domain of the enzyme showed little similarity to other known alpha-amylases. Rather, AmyA contains four characteristic conserved regions of glycoside hydrolase family 13. The recombinant enzyme was a liquefying enzyme with the highest activity at 50 degrees C and pH 9.5. The enzyme displayed a unique endo-product profile and action pattern on soluble starch to yield a series of malto-oligosaccharides ranging from maltose to maltoheptaose. The activity of the enzyme was enhanced by Co(2+), but not affected by 5 mM EDTA. Taken together, AmyA from A. amylolytica has potential to be used in paper, textile, detergent and other industries where starch needs to be degraded in an alkaline environment.  相似文献   

8.
Maltose metabolism during the conversion of transitory (leaf) starch to sucrose requires a 4-alpha-glucanotransferase (EC 2.4.1.25) in the cytosol of leaf cells. This enzyme is called DPE2 because of its similarity to the disproportionating enzyme in plastids (DPE1). DPE1 does not use maltose; it primarily transfers a maltosyl unit from one maltotriose to a second maltotriose to make glucose and maltopentaose. DPE2 is a modular protein consisting of a family 77 glycosyl hydrolase domain, similar to DPE1, but unlike DPE1 the domain is interrupted by an insertion of approximately 150 amino acids as well as an N-terminal extension that consists of two carbohydrate binding modules. Phylogenetic analysis shows that the DPE2-type enzyme is present in a limited but highly diverse group of organisms. Here we show that DPE2 transfers the non-reducing glucosyl unit from maltose to glycogen by a ping-pong mechanism. The forward reaction (consumption of maltose) is specific for the beta-anomer of maltose, while the reverse reaction (production of maltose) is not stereospecific for the acceptor glucose. Additionally, through deletion mutants we show that the glycosyl hydrolase domain alone provides disproportionating activity with a much higher affinity for short maltodextrins than the complete wild-type enzyme, while absence of the carbohydrate binding modules completely abolishes activity with large complex carbohydrates, reflecting the presumed function of DPE2 in vivo.  相似文献   

9.
Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)8-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites + 1 and + 2. A glycerol and three water molecules mimic a glucose residue at subsite − 1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite − 4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.  相似文献   

10.
BACKGROUND: Maltose phosphorylase (MP) is a dimeric enzyme that catalyzes the conversion of maltose and inorganic phosphate into beta-D-glucose-1-phosphate and glucose without requiring any cofactors, such as pyridoxal phosphate. The enzyme is part of operons that are involved in maltose/malto-oligosaccharide metabolism. Maltose phosphorylases have been classified in family 65 of the glycoside hydrolases. No structure is available for any member of this family. RESULTS: We report here the 2.15 A resolution crystal structure of the MP from Lactobacillus brevis in complex with the cosubstrate phosphate. This represents the first structure of a disaccharide phosphorylase. The structure consists of an N-terminal complex beta sandwich domain, a helical linker, an (alpha/alpha)6 barrel catalytic domain, and a C-terminal beta sheet domain. The (alpha/alpha)6 barrel has an unexpected strong structural and functional analogy with the catalytic domain of glucoamylase from Aspergillus awamori. The only conserved glutamate of MP (Glu487) superposes onto the catalytic residue Glu179 of glucoamylase and likely represents the general acid catalyst. The phosphate ion is bound in a pocket facing the carboxylate of Glu487 and is ideally positioned for nucleophilic attack of the anomeric carbon atom. This site is occupied by the catalytic base carboxylate in glucoamylase. CONCLUSIONS: These observations strongly suggest that maltose phosphorylase has evolved from glucoamylase. MP has probably conserved one carboxylate group for acid catalysis and has exchanged the catalytic base for a phosphate binding pocket. The relative positions of the acid catalytic group and the bound phosphate are compatible with a direct-attack mechanism of a glycosidic bond by phosphate, in accordance with inversion of configuration at the anomeric carbon as observed for this enzyme.  相似文献   

11.
Ren L  Cao X  Geng P  Bai F  Bai G 《Carbohydrate research》2011,(17):2688-2692
In humans, both the N-terminal catalytic domain (NtMGAM) and the C-terminal catalytic domain (CtMGAM) of small intestinal maltase glucoamylase (MGAM) are α-glycosidases that catalyze the hydrolysis of α-(1→4) glycosidic linkages in the process of starch digestion, and are considered to be the main therapeutic targets for type 2 diabetes. In this work, recombinant human CtMGAM has been cloned for the first time, and this, combined with the expression of NtMGAM in Pichia pastoris, made it possible for us to study the catalytic mechanism of MGAM in a well-defined system. The enzymatic kinetic assays of the two catalytic domains suggest that CtMGAM has the higher affinity for longer maltose oligosaccharides. Kinetic studies of commercially-available drugs such as 1-deoxynojirimycin (DNJ), miglitol, voglibose, and acarbose along with a series of acarviosine-containing oligosaccharides we isolated from Streptomyces coelicoflavus against NtMGAM, CtMGAM, and human pancreatic α-amylase (HPA) provide us an overall profile of the inhibitory ability of these inhibitors. Of all the inhibitors used in this paper, DNJ was the most effective inhibitor against MGAM; the Ki values for the two catalytic domains were 1.41 and 2.04 μM for NtMGAM and CtMGAM, respectively. Acarviostatins 2-03 and 3-03 were the best inhibitors against HPA with relatively high inhibitory activity against CtMGAM. The acarviostatins 2-03 and 3-03 inhibition constants, Ki, for HPA were 15 and 14.3 nM, and those for CtMGAM were 6.02 and 6.08 μM, respectively. These results suggest that NtMGAM and CtMGAM differ in their substrate specificities and inhibitor tolerance despite their structural relationship.  相似文献   

12.
In this paper, a novel and unique ginsenoside Rg(1)-hydrolyzing β-D-glucosidase from Penicillium sclerotiorum was isolated, characterized, and generally described. The β-glucosidase is an ~180 kDa glycoprotein with pI 6.5, and consists of four identical subunits of ~40 kDa. The β-glucosidase was active in a narrow pH range (4-5) and at relatively high temperature (60-70°C). The optimal activity against p-nitrophenyl-β-D-glucopyranoside (pNPG) was as follows: pH 4.5 and temperature 65°C. Under these conditions, the K(m) of the enzyme was 0.715 mM with a V(max) of 0.243 mmol nitrophenol/min mg. Metal ions such as Ba(2+), K(+), Fe(3+), and Co(2+) significantly promoted the enzymatic activity, while Ca(2+), Mg(2+), and Ag(+) inhibited its activity. Of the tested substrates, only ginsenoside Rg(1) could be specifically hydrolyzed by the β-glucosidase at the C6-glucoside to form the rare ginsenoside F(1). These properties were novel and different from those of other previously described glycosidases.  相似文献   

13.
The oligosaccharide-producing multifunctional amylase-N (OPMA-N) is a novel multifunctional amylase and exhibits both hydrolytic and transglycosyl activities, but the molecular mechanism for its multiple catalytic activities is still unknown. Our research investigates the possible catalytic roles of a Trp residue in OPMA-N (Trp358) which is not only near the catalytic site Glu356 but also highly conserved in glycoside hydrolase subfamily 20 (the neopullulanase subfamily). Site-directed mutageneses at this site reveal that the size and charge of the occupying amino acid directly affect substrate binding, orientation of other crucial catalytic residues, the catalytic specificity, the oligomer formation, as well as the thermal stability of the enzyme. These findings may be useful in elucidating the different mechanisms of the multiple catalytic activities of multifunctional amylase OPMA-N and hence for developing an improved multifunctional amylase for the preparation of isomaltooligosaccharides.  相似文献   

14.
Morales R  Sriratana P  Zhang J  Cann IK 《PloS one》2011,6(10):e26903
Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30-35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and Cd(2+)). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1-586) and a C-terminal (587-752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn(2+) binding of the enzyme is also provided.  相似文献   

15.
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the pathogenesis of inflammatory and hyperproliferative diseases. The available structural information indicated that lipoxygenases constitute single polypeptide chain enzymes consisting of a small N-terminal β-barrel domain and a larger C-terminal subunit that harbors the catalytic non-heme iron. Because of its structural similarity to C2-domains of lipases the N-terminal β-barrel domain of lipoxygenases, which comprises about 110 amino acids, has been implicated in membrane binding and activity regulation. To explore the functional relevance of the C2-domain in more detail and to develop a more comprehensive hypothesis on the biological role of this structural subunit we performed gene technical truncation on various mammalian LOX isoforms (12/15-LOXs of various species, human 15-LOX2, mouse 5-LOX) and quantified catalytic activity and membrane binding properties of the truncated recombinant enzyme species. We found that the C2-domain is not essential for catalytic activity and does hardly impact reaction specificity. Truncated enzyme species exhibit impaired membrane binding properties and altered reaction kinetics. Taken together, our data suggests a regulatory importance of the N-terminal β-barrel domain for mammalian lipoxygenase isoforms.  相似文献   

16.
Human maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) are small intestinal enzymes that work concurrently to hydrolyze the mixture of linear α-1,4- and branched α-1,6-oligosaccharide substrates that typically make up terminal starch digestion products. MGAM and SI are each composed of duplicated catalytic domains, N- and C-terminal, which display overlapping substrate specificities. The N-terminal catalytic domain of human MGAM (ntMGAM) has a preference for short linear α-1,4-oligosaccharides, whereas N-terminal SI (ntSI) has a broader specificity for both α-1,4- and α-1,6-oligosaccharides. Here we present the crystal structure of the human ntSI, in apo form to 3.2 Å and in complex with the inhibitor kotalanol to 2.15 Å resolution. Structural comparison with the previously solved structure of ntMGAM reveals key active site differences in ntSI, including a narrow hydrophobic +1 subsite, which may account for its additional substrate specificity for α-1,6 substrates.  相似文献   

17.
An intracellular α-glucosidase with high transglycosylation activity was purified from a mutant strain of Aspergillus niger M-1 by sequential chromatography using a DEAE-cellulose 52 column, a DEAE-Sepharose CL-6B column, and a Sephadex G-100 column. The molecular mass of the purified enzyme was determined to be 116?kD with no subunits and a pI of 5.23. Maximal α-glucosidase activity occurred at pH 6.0 and 50°C. The N-terminal amino acid sequences were identified as N-SVPGTEYVV-. The presence of Ca(2+) enhanced the enzyme activity by 20%, while the α-glucosidase activity was strongly inhibited by p-chloromercuribenzoate, N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride, monochloroacetic acid, and 2-mercaptoethanol. In addition, Ag(+), n-bromosuccinimide, and acetylacetone inhibited enzyme activity by 70%, 50%, and 22%, respectively. K(m) values of 4.32?m?mol?L(-1) and V(max) of 3.10?×?10(-2)?mol?L(-1) min(-1) were found for methyl-α-D-glucopyranoside (α-MG). Maltose was identified as the preferred substrate. The high-performance liquid chromatography (HPLC) analysis indicated that the oligosaccharide products contained 10.54% of isomaltose, 8.08% of panose, and 9.29% of isomaltotriose, and the amount of glucose, maltose, maltotriose, and maltotetrose was dropped from 22.21% to 15.80% using the purified enzyme in the solution of 25% maltose and 3% glucose. This intracellular α-glucosidase has potential applications in the synthesis of sugar derivatives and the investigation of associated mechanisms.  相似文献   

18.
The starch-binding domain from glucoamylase disrupts the structure of starch   总被引:11,自引:0,他引:11  
The full-length glucoamylase from Aspergillus niger, G1, consists of an N-terminal catalytic domain followed by a semi-rigid linker (which together constitute the G2 form) and a C-terminal starch-binding domain (SBD). G1 and G2 both liberate glucose from insoluble corn starch, although G2 has a rate 80 times slower than G1. Following pre-incubation of the starch with SBD, the activity of G1 is uniformly reduced with increasing concentrations of SBD because of competition for binding sites. However, increasing concentrations of SBD produce an initial increase in the catalytic rate of G2, followed by a decrease at higher SBD concentrations. The results show that SBD has two functions: it binds to the starch, but it also disrupts the surface, thereby enhancing the amylolytic rate.  相似文献   

19.
Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 Å) and in complex with acarbose (to 1.9 Å). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.  相似文献   

20.
Oxidized low-density lipoprotein particles is a pro-atherogenic factor implicated in atherosclerotic plaque formation. The LOX-1 scavenger receptor binds OxLDL and is linked to atherosclerotic plaque initiation and progression. We tested the hypothesis that the LOX-1 cytoplasmic domain contains a transplantable signal for membrane protein endocytosis. Structural modeling of the LOX-1 cytoplasmic domain reveals that a tripeptide motif (DDL) implicated in LOX-1 endocytosis is part of a curved β-pleated sheet structure. The two aspartic acid residues within this structural model are highly solvent-accessible enabling recognition by cytosolic factor(s). A triple alanine substitution of the DDL motif within the LOX-1 scavenger receptor substantially reduced endocytosis of OxLDL. Transplantation of the LOX-1 cytoplasmic domain into a transferrin receptor reporter molecule conferred efficient endocytosis on this hybrid protein. Mutation of the DDL motif within the hybrid LOX-1-TfR protein also substantially reduced receptor-mediated endocytosis. Thus a transplantable endocytic motif within the LOX-1 cytoplasmic domain is needed to ensure efficient internalization of pro-atherogenic OxLDL particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号