首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP binding cassette family of transport proteins. BCRP has been found to confer multidrug resistance in cancer cells. A strategy to overcome resistance due to BCRP overexpression is the investigation of potent and specific BCRP inhibitors. The aim of the current study was to investigate different multi-substituted chalcones for their BCRP inhibition. We synthesized chalcones and benzochalcones with different substituents (viz. OH, OCH(3), Cl) on ring A and B of the chalcone structure. All synthesized compounds were tested by Hoechst 33342 accumulation assay to determine inhibitory activity in MCF-7 MX and MDCK cells expressing BCRP. The compounds were also screened for their P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP1) inhibitory activity in the calcein AM accumulation assay and were found to be selective towards inhibition of BCRP. Substituents at position 2' and 4' on chalcone ring A were found to be essential for activity; additionally there was a great influence of substituents on ring B. Presence of 3,4-dimethoxy substitution on ring B was found to be optimal, while presence of 2- and 4-chloro substitution also showed a positive effect on BCRP inhibition.  相似文献   

2.
Vitamin E (VE) is a generic term that represents a family of compounds composed of various tocopherol and tocotrienol isoforms. Tocotrienols display potent anti-angiogenic and antiproliferative activities. Redox-silent tocotrienol analogues also display potent anticancer activity. The ultimate objective of this study was to develop semisynthetically C-6-modified redox-silent tocotrienol analogues with enhanced antiproliferative and anti-invasive activities as compared to their parent compound. Examples of these are carbamate and ether analogues of α-, γ-, and δ-tocotrienols (13). Various aliphatic, olefinic, and aromatic substituents were used. Steric limitation, electrostatic, hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) properties were varied at this position and the biological activities of these derivatives were tested. Three-dimensional quantitative structure–activity relationship (3D QSAR) studies were performed using Comparative Molecular Field (CoMFA) and Comparative Molecular Similarity Indices Analyses (CoMSIA) to better understand the structural basis for biological activity and guide the future design of more potent VE analogues.  相似文献   

3.
In previous work, botryllamides discovered from the marine ascidian Botryllus tyreus were characterized as selective inhibitors of the ABCG2 multidrug transporter. However, the structural basis for this activity could not be established. In this study, botryllamide F, the core botryllamide structure, and botryllamide G, the most potent botryllamide ABCG2 inhibitor, were synthesized along with a series of structural variants for evaluation of structure–activity relationships. The biological activity of synthetic botryllamide analogs implied that the 2-methoxy-p-coumaric acid portion, and the degree of double bond conjugation within this group, were critical for inhibition of ABCG2. However, variations in the substituents on the two aryl groups did not appear to significantly impact the potency or degree of inhibition.  相似文献   

4.
Chemotherapy is one of the major forms of cancer treatment. Unfortunately, tumors are prone to multidrug resistance leading to failure of treatment. Breast cancer resistance protein (BCRP), the second member of ABC transporter subfamily G, has been found to play a major role in drug efflux and hence multidrug resistance. Until now, very few potent and selective BCRP inhibitors like Ko143 have been identified. In the search for more potent and selective BCRP inhibitors, we synthesized and investigated a series of differently substituted quinazoline compounds. Several variations at positions 2, 4, 6 and 7 of the quinazoline scaffold were carried out to develop a structure–activity-relationship analysis for these compounds. It was found that compounds bearing a phenyl substituent at position 2 of the 4-anilinoquinazoline scaffold were most potent. On the aniline ring at position 4 of the quinazoline moiety substituents like NO2, CN, CF3 led to very high BCRP inhibition potencies. The most potent compounds were further investigated for their intrinsic cytotoxicity and their ability to reverse the multidrug resistance. Compound 20, an anilinoquinazoline bearing a phenyl ring at position 2 and meta-nitro substitution on the 4-anilino ring, was found to have the highest therapeutic ratio. The most active compounds from each variation were also investigated for their effect on BCRP expression. It was found that compound 20 has no significant effect on BCRP expression, while compound 31 decreased the surface BCRP expression. The only difference in the two compounds was the presence of a 3,4-dimethoxyphenyl ring in compound 31 instead of phenyl substitution at position 2 of the quinazoline moiety. From the study of all target compounds, compound 20 was the most prominent compound having inhibitory potency even higher than Ko143, the most potent BCRP inhibitor known. Compound 20 was also found to be selective towards BCRP with a very high therapeutic ratio.  相似文献   

5.
6.
Synthesis and anticholinesterase activity of 4-aryl-4-oxo-N-phenyl-2-aminylbutyramides, novel class of reversible, moderately potent cholinesterase inhibitors, are reported. Simple substituent variation on aroyl moiety changes anti-AChE activity for two orders of magnitude; also substitution and type of hetero(ali)cycle in position 2 of butanoic moiety govern AChE/BChE selectivity. The most potent compounds showed mixed-type inhibition, indicating their binding to free enzyme and enzyme–substrate complex. Alignment-independent 3D QSAR study on reported compounds, and compounds having similar potencies obtained from the literature, confirmed that alkyl substitution on aroyl moiety of molecules is requisite for inhibition activity. The presence of hydrophobic moiety at close distance from hydrogen bond acceptor has favorable influence on inhibition potency. Docking studies show that compounds probably bind in the middle of the AChE active site gorge, but are buried deeper inside BChE active site gorge, as a consequence of larger BChE gorge void.  相似文献   

7.
合成了3-叠氮基-N-正癸烷基水杨酰胺和5-叠氮基-N-正癸烷基水杨酰胺并检测了它们对呼吸链酶系从琥珀酸到细胞色素c段电子传递活性的抑制作用.两种化合物对琥珀酸-泛醌还原酶的抑制能力基本相同,而5位叠氮基取代物对泛醌-细胞色素c还原酶的抑制能力较3位叠氮基取代物为强.它们与泛醌反应抑制剂3-硝基-N-正癸烷基水杨酰胺相比较,其抑制性质基本相似,只是抑制能力较后者为弱  相似文献   

8.
The breast cancer resistance protein (BCRP, ABCG2) is among the latest discovered ABC proteins to be involved in MDR phenotype and for which only few inhibitors are known. In continuing our program aimed at discovering efficient multidrug resistance modulators, we conceived and synthesized new acridones as ABCG2 inhibitors. The design of target molecules was based on earlier results dealing with ABCG2 inhibition with flavone and chromone derivatives. The human wild-type (R482) ABCG2-transfected cells were used for rational screening of inhibitory acridones. The synthesis of target compounds, the inhibitory activity against ABCG2, and structure-activity relationships are described. One of the acridones was even more potent than the reference inhibitor, GF120918, as shown by its ability to inhibit mitoxantrone efflux.  相似文献   

9.
Lape M  Elam C  Versluis M  Kempton R  Paula S 《Proteins》2008,70(3):639-649
The ion transport activity of the sarco/endoplasmic reticulum calcium ATPase (SERCA) is specifically and potently inhibited by the small molecule 2,5-di-tert-butylhydroquinone (BHQ). In this study, we investigated the relative importance of the nature and position of BHQ's four substituents for enzyme inhibition by employing a combination of experimental and computational techniques. The inhibitory potencies of 21 commercially available or synthesized BHQ derivatives were determined in ATPase activity assays, and 11 compounds were found to be active. Maximum inhibitory potency was observed in compounds with two para hydroxyl groups, whereas BHQ analogues with only one hydroxyl group were still active, albeit with a reduced potency. The results also demonstrated that two alkyl groups were an absolute requirement for activity, with the most potent compounds having 2,5-substituents with four or five carbon atoms at each position. Using the program GOLD in conjunction with the ChemScore scoring function, the structures of the BHQ analogues were docked into the crystal structure of SERCA mimicking the enzyme's E(2) conformation. Analysis of the docking results indicated that inhibitor binding to SERCA was primarily mediated by a hydrogen bond between a hydroxyl group and Asp-59 and by hydrophobic interactions involving the bulky inhibitor alkyl groups. Attempts to dock BHQ into crystal structures corresponding to the E(1) conformation of the enzyme failed, because the conformational changes accompanying the E(2)/E(1) transition severely restricted the size of the binding site, suggesting that BHQ stabilizes the enzyme in its E(2) form. The potential role of Glu309 in enzyme inhibition is discussed in the context of the computational results. The docking scores correlated reasonably well with the measured inhibitory potencies and allowed the distinction between active and inactive compounds, which is a key requirement for future virtual screening of large compound databases for novel SERCA inhibitors.  相似文献   

10.
11.
Cytotoxicity data of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives were subjected to quantitative structure-activity relationship (QSAR) study using linear free energy related (LFER) model of Hansch using electronic (Hammett sigma), hydrophobicity (pi) and steric (molar refractivity and STERIMOL L, B1, B2, B3 and B4) parameters of phenyl ring substituents of the compounds, along with appropriate indicator variables. Principal component factor analysis (FA) was used as the data-preprocessing step to identify the important predictor variables contributing to the response variable and to avoid collinearities among them. The generated multiple linear regression (MLR) equations were statistically validated using leave-one-out technique. Genetic function approximation (GFA) was also used on the same data set to develop QSAR equations, which produced the same best equation as obtained with FA-MLR. The final equation is of acceptable statistical quality (explained variance 80.2%) and predictive potential (leave-one-out predicted variance 74%). The analysis explores the structural and physicochemical contributions of the compounds for cytotoxicity. A thiol substituent at 2 position of the imidazole nucleus decreases cytotoxicity when compared to the corresponding unsubstituted congener. Presence of hydrogen bond donor group at meta position of the phenyl ring present at 5 position of the imidazole nucleus also reduces cytotoxicity. Additionally, absence of any substituent at 2 and 3 positions of the phenyl ring of 1-phenylamino fragment reduces the cytotoxicity. The negative coefficient of sigmap indicates that presence of electron-withdrawing substituents at the para position of the phenyl ring of the 1-phenylamino fragment is not favourable for the cytotoxicity. Again, lipophilicity of meta substituents of the 5-phenyl ring increases cytotoxicity. The coefficients of molar refractivity (MRm) and STERIMOL parameters for meta substituents (Lm, B1m and B4m) of the phenyl ring of 1-phenylamino fragment indicate that the length, width and overall size of meta substituents are conducive factors for the cytotoxicity.  相似文献   

12.
We report the structure-activity relationship of a series of D-, and L-isofagomine and fagomine isomers as glycosidase inhibitors. Our study revealed that a positive charge at the anomeric position of d-isofagomines enhanced the potency toward β-glycosidases, while the epimerization at the C3 OH group drastically reduced their inhibitory potency by over three orders of magnitude. Furthermore, d-3,4-di-epi-isofagomine abolished their inhibition activities against all enzymes. L-Isofagomine was also a fairly potent inhibitor of human β-glucocerebrosidase, with an IC?? value of 8.7 μM. A molecular docking study revealed that the positions and orientations of the piperidine ring of D-3-epi-isofagomine in the binding site was similar to that of D-isofagomine, while D-3-epi-isofagomine missed the hydrogen bond interactions between Asp127 and the 3-OH group and between Trp179 and the 3-OH group. Furthermore, the top 10 docking models ranked by IFDscore suggested that D-3,4-di-epi-isofagomine can not bind to β-glucocerebrosidase at a stable interaction mode. These results provide an insight into the structural requirements of isofagomine isomers for developing a new type of pharmacological chaperone for Gaucher disease.  相似文献   

13.
At the end of the last century tariquidar (XR9576) was synthesized, pharmacologically investigated, and classified as a promising 3rd generation P-glycoprotein (P-gp) modulator. Following the discovery of BCRP in 1998 an increasing number of substances were studied in relation to their potency to interact with this transporter. Recently it has been shown that XR9576 inhibits both P-gp and BCRP transport function similarly to GF120918 (elacridar). This observation prompted us to investigate 5 XR compounds and 25 structurally related derivatives synthesized in our laboratory for their BCRP inhibitory effect. The biological activity data were determined by our new Hoechst 33342 assay that has been transferred from P-gp to BCRP overexpressing cells. 3D-QSAR models (CoMFA and CoMSIA) were generated and validated by the leave-many-out method and the scrambling stability test. The best models yielded an internal predictive squared correlation coefficient higher than 0.8 and contained steric, electrostatic, hydrophobic, and hydrogen bond donor fields. To our knowledge, this is the first 3D-QSAR analysis of BCRP inhibitors. Additionally the biological activity data determined in P-gp overexpressing cells on one side and BCRP overexpressing cells on the other side were compared to identify selective and non-selective inhibitors of P-gp and BCRP. The results may help to get a better insight which structural elements are necessary to direct the interaction of these compounds with P-gp and/or BCRP.  相似文献   

14.
The effects of introducing simple halogen, alkyl, and alkoxy substituents to the 4, 5, 6 and 7 positions of 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione, an inhibitor of the interaction between HIV gp120 and host cell CD4 receptors, on activity in an HIV entry assay was examined. Small substituents at C-4 generally resulted in increased potency whilst substitution at C-7 was readily tolerated and uniformly produced more potent HIV entry inhibitors. Substituents deployed at C-6 and, particularly, C-5 generally produced a modest to marked weakening of potency compared to the prototype. Small alkyl substituents at N-1 exerted minimal effect on activity whilst increasing the size of the alkyl moiety led to progressively reduced inhibitory properties. These studies establish a basic understanding of the indole element of the HIV attachment inhibitor pharmacophore.  相似文献   

15.
A series of N-aryl heteroarylisopropanolamines in which an indole or a 3-arylpyrrole moiety was linked to an aryl group through an isopropanolamine linker, were designed and synthesized as potential anti-HIV-1-PR agents. Series was tested for their ability in blocking PR activity. As a rule, indole derivatives of class 1 exhibited more potency than pyrrole analogues of class 2 while tert-butylamide substituents increased anti-PR potency. In fact, bis tert-butylamide 1e showed the highest activity with IC(50)=25 microM. Even if not very potent, a simple class of anti-PR agents, with a facile synthetic pathway was discovered. QSAR studies on isopropanolamines 1 and 2 were performed in comparison with diarylbutanols, a new class of non peptidic anti-PR agents, recently discovered by Agouron Pharmaceuticals. QSAR and CoMFA models based on 30 diarylbutanols used as a training set were developed. The obtained models were used to investigate the binding mode of the newly synthesized derivatives 1 and 2. The results of this study suggest that N-aryl heteroarylisopropanolamines bind to the PR active site similarly to the diarylbutanols of Agouron.  相似文献   

16.
Tariquidar (XR9576) analogs, modulators of cancer multidrug resistance (MDR), were subjected to QSAR and 3D-QSAR analyses. The structural features contributing to anti-MDR activity were identified by the Free-Wilson analysis and pharmacophore search using Hoechst 33342 as a template. 3D-QSAR CoMFA and CoMSIA models were derived and tested. The best models yielded an external predictivity of 0.66-0.75 squared correlation coefficient and outlined HB-acceptor, steric, and hydrophobic fields as the most important 3D properties. On the basis of the QSAR and 3D-QSAR analyses it was suggested that the strong inhibitory potency of the compounds studied is related to the presence of a bulky aromatic ring system with a 3rd positioned heteroatom toward the anthranilamide nucleus in the opposite end of the tetrahydroquinoline group. The results can help in directing the rational design of new generations of potent P-glycoprotein MDR modulators.  相似文献   

17.
QSAR analysis based on classical Hansch approach was adopted on two recently reported novel series of 2-phenylpyran-4-ones as selective cyclooxygenase-2 (COX-2) inhibitors. The 6-methyl derivatives of title compounds bifurcate as 3-phenoxypyran-4-ones (subset A) and 3-phenylpyran-4-ones (subset B) among series 1. Series 2 consists of 5-chloro derivatives of title compounds. Various regression equations were derived to study the influence of phenoxy and phenyl ring substituents of series 1 compounds on COX-2, COX-1 and selective COX-2 over COX-1 inhibitory activity. The best triparametric equation derived for 36 compounds of series 1 explains the hydrophobic, electronic and steric requirements for improved COX-2 inhibitory activity. QSAR model derived to explore the selective COX-2 over COX-1 inhibition showed that selectivity could be influenced by size and lipophilicity of substituents. The size of the first atom of 2 substituents appears to have negative effect on selectivity, whereas highly polar 3 substituents at R are favorable for improved selectivity. QSAR investigations on series 2 compounds revealed some interesting correlation of COX-2 inhibitory activity with calculated physicochemical properties of whole molecules. The positive logP confirms the hydrophobic interaction of series 2 compounds with COX-2 enzyme. The positive MR term indicates that an overall increase in size and polarizabilty of the molecules increases COX-2 inhibitory activity. The positive contribution of structural variable suggests biphenyl analogs are extremely potent COX-2 inhibitors.  相似文献   

18.
Recently, we reported potent and small-sized beta-secretase (BACE1) inhibitors KMI-570 and KMI-684 in which we replaced carboxylic acid groups at the P(1)(') position of KMI-420 and KMI-429, respectively, with tetrazole derivatives as carboxylic acid bioisosteres. These modifications improved significantly BACE1 inhibitory activity and chemical stability. In this study, the acidic tetrazole ring of the P(4) position of KMI-420 and KMI-570, respectively, was replaced with various hydrogen bond acceptor groups. We found BACE1 inhibitor KMI-574 that exhibited potent inhibitory activity in cultured cells as well as in vitro enzymatic assay.  相似文献   

19.
The anticancer activity of rhinacanthins and related naphthoquinone esters is quantitatively analyzed through Fujita-Ban and Hansch approaches. The analyses have helped to ascertain the role of different substituents in explaining the observed inhibitory actions of these compounds. From both approaches it appeared that naphthalene ring instead of benzene ring, dimethyl substitution at R(1) and R(2), and hydrogen-bond acceptor substituents at R(3) (Figure 1) are advantageous to improve the activity of a compound against KB cell lines. This in turn leads to the suggestion that the rhinacanthin-N scaffold is the structural entity that needs exploration for new potential compounds. Further, in the Fujita-Ban analysis, it is observed that the compounds bearing a OMe substitution, relative to H, at R(4) have a slight positive contribution to pIC(50) (KB) whereas the substituents H or OMe at R(5), relative to OH, have negative contributions. In conformity with these findings, the Hansch approach revealed that a more hydrophobic group at R(4) and a more hydrophilic group at R(5) positions are beneficial in raising the activity. The two quantitative structure-activity relationship (QSAR) analyses, differing in parametric approach, therefore, provided the grounds for rationalizing the substituent selection to design more potent compounds of the series.  相似文献   

20.
Several flavonoids and isoflavonoids isolated from Balaton tart cherry were assayed for prostaglandin H endoperoxide synthase (PGHS-1) enzyme or cyclooxygenase isoform-1 (COX-1) activity. Genistein showed the highest COX-1 inhibitory activity among the isoflavonoids studied, with an IC50 value of 80 microM. Kaempferol gave the highest COX-1 inhibitory activity among the flavonoids tested, with an IC50 value of 180 microM. The structure-activity relationships of flavonoids and isoflavonoids revealed that hydroxyl groups at C4', C5 and C7 in isoflavonoids were essential for appreciable COX-1 inhibitory activity. Also, the C2-C3 double bond in flavonoids is important for COX-1 inhibitory activity. However, a hydroxyl group at the position decreased COX-1 inhibitory activity by flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号