首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Immature mouse oocytes undergo spontaneous meiotic maturation when released from antral follicles into culture media. The first sign of meiotic resumption is germinal vesicle breakdown (GVB). Cytosolic free Ca2+ was measured in mouse oocytes during spontaneous maturation by monitoring fluorescence of indo-1 or fluo-3. The majority of oocytes showed a series of Ca2+ oscillations that continued for 1-3 h. Repetitive Ca2+ increases occurred every 1-3 min and lasted for 10-60 s. The Ca2+ oscillations appeared to be caused by an increase in inositol 1,4,5-trisphosphate (InsP3) because once they ceased, similar oscillations were triggered by injection of exogenous InsP3. Also, injection of the InsP3 receptor antagonist heparin (final concentration, 100 micrograms/ml) blocked the spontaneous Ca2+ oscillations. In contrast, Ca2+ oscillations induced by thimerosal were not inhibited by heparin. Treating oocytes with media containing 20 microM BAPTA/AM abolished Ca2+ oscillations in oocytes but did not affect the rate of GVB. The data show that cytosolic Ca2+ oscillations apparently caused by polyphosphoinositide turnover occur during mammalian oocyte maturation. However, the spontaneous oscillations do not appear to trigger GVB. Also, the data indicate that there are two separate Ca2+ release mechanisms in mouse oocytes, one sensitive to InsP3, the other to thimerosal.  相似文献   

2.
Porcine follicular oocytes from medium-sized follicles (3-5 mm in diameter) were cultured in modified Hank's balanced salts solution (MHBS) to which pyruvate, lactate, and glucose were added as an energy source. Bovine serum albumin (0.4%) was added as a protein source and the oocytes were cultured for 42 h at 37 degrees C in 5% CO2 in air. In this medium porcine oocytes underwent 80-90% nuclear maturation after 42 h. Oocytes were cultured in MHBS with various amounts of CaCl2 as well as in the presence of verapamil, a Ca2+ channel blocker, and the divalent cationophore A23187. It was found that the lowest concentration of Ca2+ required for oocyte maturation was around 0.0265-0.053 mM. Such a requirement for Ca2+ in the culture medium extended through metaphase II. If Ca2+ was omitted during the final 4 h of culture, the metaphase II chromosomes appeared extremely condensed or degenerated. Verapamil at a level of 0.2 mM inhibited germinal vesicle breakdown or resulted in degeneration, whereas lower concentrations did not affect oocyte maturation. In the presence of 0.02 mM verapamil, the maturation of cumulus-enclosed oocytes was not affected, whereas at the same dose of verapamil the maturation of denuded oocytes was inhibited. Less than 3.8 X 10(-7) M divalent cationophore did not inhibit oocyte maturation. Maturation was inhibited by 3.8 X 10(-7) and 3.8 X 10(-6) M divalent cationophore. In conclusion, maintenance of oocytes in a nondegenerated state also requires the constant presence of Ca2+ in the culture medium.  相似文献   

3.
Full grown starfish oocytes are arrested at meiotic prophase I in the ovary. The natural hormone 1-methyladenine triggers oocyte maturation which involves meiosis reinitiation along with a variety of morphological, biochemical, and electrical changes. In studying oocytes of two species, Henricia leviuscula and Asterina miniata, using the voltage-clamp technique, we found interesting differences and similarities in the electrophysiological changes which occurred during maturation. Oocytes of both species have three major voltage-dependent currents: an inward Ca2+ current, an inwardly rectifying K+ current, and a transient outward K+ current (A-current). The Ca2+ current and the A-current were similar in the two species but the inward rectifier in Henricia had activation kinetics that were more than 10-fold slower than in Asterina. Nonetheless, all three currents were affected similarly during maturation: the inward Ca2+ currents remained constant in both species, while the two K+ currents decreased in amplitude. In Henricia the membrane surface area decreased substantially during maturation, while in Asterina it remained constant. This may be explained by the more highly infolded state of the membrane in the immature Henricia oocyte. The selective loss of K+ current followed the time course of the area decrease in Henricia, but the same percentage decrease in current occurred in Asterina without a net membrane loss.  相似文献   

4.
Experiments using a Ca2+/Mg2+, serum free media were carried out aimed at clarifying proposed effects of these divalent cations on in vitro meiotic maturation of mouse and cow oocytes. Agents known to perturb intracellular Ca2+ or calmodulin were also studied. Total absence of both cations restricts both oocyte species from completing meiosis I. Media containing Mg2+ and no Ca2+ permitted some maturation in both species. Absence or small amounts of Mg2+ in the media containing control amounts of Ca2+ was much more inhibitory for the cow than the mouse oocyte. Studies of mouse oocyte maturation with Verapamil, Epinephrine and A23187 demonstrated an inhibition of maturation perhaps by the intracellular Ca2+ changes these agents are alleged to induce. A dependency of mouse oocyte maturation on active Ca-Calmodulin complexes was suggested by the calmodulin inhibitor studies.  相似文献   

5.
Membrane vesicles isolated from Xenopus laevis full-grown stage VI and mature oocytes accumulate 45Ca in the presence of ATP and oxalate. The Ca2+-pumping activity measured in vitro does not appear to be modified during meiotic maturation; it is not affected by the complex Ca2+-calmodulin. Preliminary experiments have shown that the addition of Na+ (30 mM) rapidly discharges accumulated 45Ca into oocyte vesicles indicating that a Na+/Ca2+ exchange system occurs in this membrane fraction. During progesterone-induced maturation, the different intracellular membranes undergo morphological changes. We suggest that intracellular movement of membrane vesicles could be involved in the local regulation of Ca2+ levels.  相似文献   

6.
Mature limpet oocytes arrested at the first metaphase (MI) of meiosis are activated by the stimulation of fertilizing sperm. The aim of the present study was to clarify the spatiotemporal property and mechanism of intracellular Ca2+ increase in limpet oocytes, which is a prerequisite signal for initiation of development at fertilization. In all of the five limpet species tested, the initial Ca2+ rising phase just after fertilization took the form of a centripetal Ca2+ wave spreading from the whole cortex to the center (cortical flash), yielding a homogeneous Ca2+ elevation throughout the oocyte. The Ca2+ level remained high during the subsequent plateau phase lasting for several minutes and then returned nearly to the original value. No additional Ca2+ increase followed the plateau phase at least by the time of first cleavage. Both rising and plateau phases of Ca2+ increase at fertilization were inhibited by removal of external Ca2+, suggesting that continuous Ca2+ entry occurs throughout the Ca2+ increase. Injection of inositol 1,4,5-trisphosphate (IP3) was effective in generating a Ca2+ increase in mature limpet oocytes arrested at MI; however, their ability to show an IP3-induced Ca2+ increase was extremely low, as compared with other animals. Responsiveness to IP3 injection in immature oocytes arrested at the first prophase (PI) was similar to that in the mature oocytes, suggesting that the IP3-induced Ca2+ release system does not develop during the process of meiotic maturation in limpet oocytes. Caffeine, cyclic adenosine diphosphate ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP), the agents known to stimulate internal Ca2+ release mechanisms distinct from an IP3-dependent pathway, had no effect on intracellular Ca2+ changes in mature limpet oocytes. Labeling of the endoplasmic reticulum (ER) with DiI revealed that cortical ER clusters are only present in the localized region around meiotic chromosomes in mature oocytes. These data strongly suggest that Ca2+ release and its propagating mechanisms are undeveloped in limpet oocytes and that Ca2+ influx is the only Ca2+-mobilizing system available and functioning at fertilization.  相似文献   

7.
Intracellular pH and Ca(2+) were measured with BCECF- and Calcium Green-dextran during maturation and fertilization of oocytes of the limpet Lottia gigantea. Maturation of oocytes from prophase to metaphase I of meiosis was induced in seawater adjusted to pH 9 with NH(4)OH. Intracellular pH rose during maturation induction, and maturation was also induced by microinjecting pH 8, but not pH 7, HEPES buffer. Intracellular Ca(2+) rose during NH(4)OH-induced maturation, but maturation was not inhibited when the increase was blocked by microinjection of BAPTA. When the metaphase I oocytes were fertilized(), there was an abrupt increase in intracellular Ca(2+), and activation (polar body formation) failed to occur in BAPTA-injected oocytes. Intracellular pH did not rise during fertilization. These observations show that maturation from prophase to metaphase I of meiosis is pH-dependent and activation of the metaphase I oocytes is Ca(2+)-dependent. A Ca(2+) action potential was present in both immature and mature oocytes but was more prominent in mature oocytes whose input resistance was higher. Fertilization produced a long-lasting (17-20 min) Na(+)-dependent fertilization potential with superimposed oscillations resembling Ca(2+) action potentials.  相似文献   

8.
Following fertilization, the oocyte remodels the sperm chromatin into the male pronucleus. As a component of this process, during meiotic maturation, oocytes develop an activity that transfers histones onto sperm DNA. To further characterize this activity, we tested whether oocytes at different stages of growth could, upon entry into metaphase of maturation, transfer histones onto sperm DNA, as judged by chromatin morphology and immunocytochemistry. Meiotically competent growing oocytes, which spontaneously enter metaphase upon culture, transferred histones onto sperm chromatin, whereas incompetent oocytes did not, even when treated with okadaic acid to induce germinal vesicle breakdown (GVBD) and chromosome condensation. When incompetent oocytes were cultured until they acquired the ability to undergo GVBD, only a small proportion also developed histone-transfer activity during maturation. However, this proportion significantly increased when the oocytes were cultured as granulosa-oocyte complexes. The failure of histone-transfer activity to develop in incompetent oocytes treated with okadaic acid was not linked to low H1 kinase activity nor rescued by injected histones. Because competent, but not incompetent, oocytes produce natural calcium oscillations, incompetent oocytes were exposed to SrCl2. One-third of treated oocytes produced at least one Ca2+ oscillation and, following insemination, the same proportion transferred histones onto sperm DNA. Histone transfer did not occur in oocytes pretreated with the Ca2+ chelator, BAPTA-AM. These results indicate that the ability to develop histone-transfer activity is acquired by growing oocytes near the time of meiotic competence, that it is separable from this event, and that it may be regulated through a Ca2+-dependent process.  相似文献   

9.
At the time of fertilization, release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm of oocytes is said to be induced by hydrolysis of phosphatidylinositol bis phosphate (PI2) via activation of phospholipase C and is responsible for the Ca2+ oscillation in oocytes immediately after sperm penetration. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of mammalian oocytes and to affect embryonic development after fertilization. To obtain more information on the role of cumulus cells in cytoplasmic maturation of oocytes, the effects of cumulus cells on the rise in [Ca2+]i and the rates of activation and development of porcine mature oocytes induced by IP3 injection were investigated. Mature porcine oocytes that had been denuded of their cumulus cells in the early stage of the maturation period had a depressed rise in [Ca2+]i (4.0-6.0) and reduced rates of activation (31.4-36.8%) and development (10.0-24.4%) induced by IP3 injection compared with those of their cumulus-enclosed counterparts (7.3, 69.1% and 43.8%; P < 0.05). The [Ca2+]i rise and the rates of activation and development depressed by the removal of cumulus cells were restored by adding pyruvate to the maturation medium. Furthermore, the IP3 injection-induced depression of [Ca2+]i rise in mature oocytes derived from cumulus-denuded oocytes (DOs) was restored when they were cultured in a medium with pyruvate (3.9-6.3, P < 0.05). Also, mature oocytes from cumulus-oocyte complexes (COCs) cultured in a medium without glucose had a lower rise in [Ca2+]i than that in mature oocytes from COCs cultured with glucose (7.4-6.0, P < 0.05). Cumulus cells supported porcine oocytes during maturation in the rise in [Ca2+]i induced by IP3 and the following activation and development of porcine oocytes after injection of IP3. Moreover, we inferred that a function of cumulus cells is to produce pyruvate by metabolizing glucose and to provide oocytes with pyruvate during maturation, thereby promoting oocyte sensitivity to IP3.  相似文献   

10.
Vertebrate oocytes proceed through meiosis I before undergoing a cytostatic factor (CSF)-mediated arrest at metaphase of meiosis II. Exit from MII arrest is stimulated by a sperm-induced increase in intracellular Ca2+. This increase in Ca2+ results in the destruction of cyclin B1, the regulatory subunit of cdk1 that leads to inactivation of maturation promoting factor (MPF) and egg activation. Progression through meiosis I also involves cyclin B1 destruction, but it is not known whether Ca2+ can activate the destruction machinery during MI. We have investigated Ca2+ -induced cyclin destruction in MI and MII by using a cyclin B1-GFP fusion protein and measurement of intracellular Ca2+. We find no evidence for a role for Ca2+ in MI since oocytes progress through MI in the absence of detectable Ca2+ transients. Furthermore, Ca2+ increases induced by photorelease of InsP3 stimulate a persistent destruction of cyclin B1-GFP in MII but not MI stage oocytes. In addition to a steady decrease in cyclin B1-GFP fluorescence, the increase in Ca2+ stimulated a transient decrease in fluorescence in both MI and MII stage oocytes. Similar transient decreases in fluorescence imposed on a more persistent fluorescence decrease were detected in cyclin-GFP-injected eggs undergoing fertilization-induced Ca2+ oscillations. The transient decreases in fluorescence were not a result of cyclin B1 destruction since transients persisted in the presence of a proteasome inhibitor and were detected in controls injected with eGFP and in untreated oocytes. We conclude that increases in cytosolic Ca2+ induce transient changes in autofluorescence and that the pattern of cyclin B1 degradation at fertilization is not stepwise but exponential. Furthermore, this Ca2+ -induced increase in degradation of cyclin B1 requires factors specific to mature oocytes, and that to overcome arrest at MII, Ca2+ acts to release the CSF-mediated brake on cyclin B1 destruction.  相似文献   

11.
During the reinitiation of the meiotic cycle (maturation) induced by the hormone 1-methyladenine (1-MA), starfish oocytes undergo structural and biochemical changes in preparation for successful fertilization. Previous work has shown that the sensitivity of internal Ca(2+) stores to InsP(3) increases during maturation of the oocytes. Since Astropecten auranciacus oocytes also respond to cADPr, we have studied whether the response to cADPr also changes during maturation. We have found that the photoactivation of injected cADPr in immature oocytes immediately induces multiple patches of Ca(2+) release in the cortical region. The Ca(2+) signal then spreads from these initial points of increase to the entire cell. In mature oocytes, the uncaging of cADPr induces instead a single (or at most a dual) initial point of Ca(2+) release, which is immediately followed by the formation of a cortical Ca(2+) flash and then by the globalization of the wave and by the elevation of the fertilization envelope. External Ca(2+) plays a role in the Ca(2+) responses. Inhibition of L-type Ca(2+) channels does not affect the initial Ca(2+) release, but abolishes the cortical flash and impairs the elevation of the fertilization envelope. External Ca(2+) has other effects, as shown by the irregular appearance of the surface of oocytes incubated in Ca(2+)-free sea water. The sequence of Ca(2+) responses induced by cADPr in mature oocytes mimics those seen at fertilization, i.e., a first localized Ca(2+) increase followed by a cortical flash and by the globalization of the Ca(2+) signal. As in the case of maturation, L-type Ca(2+) channel blockers abolish the sperm induced cortical flash.  相似文献   

12.
Studies on Ca2+-channel distribution in maturation arrested mouse oocyte   总被引:1,自引:0,他引:1  
The present study was carried out to identify the existence of voltage-dependent Ca2+-channels (P/Q-, N-, and L-type) and their distributional differences in germinal vesicle (GV) and GV breakdown (GVBD)-arrested mouse oocytes which includes GVBD to telophase I of meiosis I and matured oocytes (MII, metaphase of meiosis II) by using the immunocytochemical method and a confocal laser scanning microscope. (1) Comparison between follicular oocytes (GV) and GV-arrested oocytes after 17 hr of in vitro culture. In follicular oocytes, P/Q-, N-, L (anti-alpha1C anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, GV-arrested oocytes, after in vitro culture for 17 hr, showed no presence of Ca2+-channels in most oocytes. (2) Comparison between GVBD oocytes after culture in vitro for 3 hr and GVBD-arrested oocytes after culture in vitro for 17 hr. In GVBD oocytes, P/Q-, N-, L (anti-1C, anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, in GVBD-arrested oocytes, none of the three types of Ca2+-channels were identified in 72-86% of oocytes. The present study demonstrates that in most GVBD-arrested oocytes that do not mature to MII, there is no Ca2+-channel identified. Therefore, most of the GVBD-arrested oocytes seem to have defects in Ca2+-channel expression/translation. Also, distributional changes of Ca2+-channels take place depending on the maturation progress in GV oocytes and MII stage oocytes (ovulated and 17 hr cultured MII stage oocytes). In addition, we found evidence that a functional voltage-dependent Ca2+-channel (L-type) exists in mouse oocytes (ovulated and cultured MII staged oocytes by a confocal laser scanning microscope).  相似文献   

13.
Cytoplasmic free calcium levels during progesterone-induced meiotic maturation in Xenopus laevis oocytes were measured using the photoprotein aequorin. The resting level of [Ca2+]i was 92.6 +/- 30 nM. No significant changes were observed after progesterone addition, although a large pulse of [Ca2+]i was observed upon activation of matured oocytes. These findings are discussed in terms of the role of calcium in maturation and it is concluded that calcium is not the second messenger for progesterone. This conclusion is further supported by the finding that 100 microM TMB-8, a blocker of intracellular calcium release, had no effect on progesterone-induced maturation.  相似文献   

14.
During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.  相似文献   

15.
In Bufo arenarum, progesterone is the physiological maturation inducer. However, in this species, oocytes reinitiate meiosis with no need of an exogenous hormonal stimulus when deprived of their enveloping cell, a phenomenon called spontaneous maturation. We demonstrated that in Bufo arenarum spontaneous maturation occurs only in oocytes obtained during the reproductive period, which can be considered competent to mature spontaneously, in contrast to those in the non-reproductive period, which are incompetent. Interestingly, full-grown Bufo arenarum oocytes always respond to progesterone regardless of the season in which they are obtained. There is a general consensus that both a transient increase in intracellular calcium and a decrease in cAMP-dependent protein kinase activity are the first steps in the mechanisms by which progesterone induces maturation in amphibians. In the present work we analysed the role of calcium in the spontaneous and progesterone-induced maturation of Bufo arenarum oocytes. Results demonstrated that the absence of calcium in the incubation medium or the prevention of Ca(2+) influx by channel blockers such as CdCl2 or NiCl2 did not prevent meiosis reinitiation in either type of maturation. The inhibition of the Ca(2+)-calmodulin complex in no case affected the maturation of the treated oocytes. However, when the oocytes were deprived of calcium by incubation in Ca(2+)-free AR + A23187, meiosis resumption was inhibited. In brief, we demonstrated that in Bufo arenarum the reinitiation of meiosis is a process independent of extracellular calcium at any period of the year and that oocytes require adequate levels of intracellular calcium for germinal vesicle breakdown to occur.  相似文献   

16.
The universal signal for egg activation at fertilization is a rise in cytoplasmic Ca(2+) with defined spatial and temporal kinetics. Mammalian and amphibian eggs acquire the ability to produce such Ca(2+) signals during a maturation period that precedes fertilization and encompasses resumption of meiosis and progression to metaphase II. In Xenopus, immature oocytes produce fast, saltatory Ca(2+) waves that can be oscillatory in nature in response to IP(3). In contrast, mature eggs produce a single continuous, sweeping Ca(2+) wave in response to IP(3) or sperm fusion. The mechanisms mediating the differentiation of Ca(2+) signaling during oocyte maturation are not well understood. Here, I characterized elementary Ca(2+) release events (Ca(2+) puffs) in oocytes and eggs and show that the sensitivity of IP(3)-dependent Ca(2+) release is greatly enhanced during oocyte maturation. Furthermore, Ca(2+) puffs in eggs have a larger spatial fingerprint, yet are short lived compared to oocyte puffs. Most interestingly, Ca(2+) puffs cluster during oocyte maturation resulting in a continuum of Ca(2+) release sites over space in eggs. These changes in the spatial distribution of elementary Ca(2+) release events during oocyte maturation explain the continuous nature and slower speed of the fertilization Ca(2+) wave.  相似文献   

17.
Li CJ  Fan BQ 《Theriogenology》1997,48(1):33-41
Mitochondrial reorganization during meiotic maturation and parthenogenetic activation was studied in mouse oocytes using a laser scanning confocal microscope and a transmission electron microscope. Mitochondria were mainly distributed perinuclearly in the germinal vesicle (GV) stage oocytes and were dispersed throughout ooplasm after germinal vesicle breakdown (GVBD), except for a slightly higher occurrence in one hemisphere of oocytes, from which the first polar body (PbI) would become extruded. Mitochondria reaggregated around the metaphae II (MII) spindle and pronuclear region after alcohol activatation at the MII stage. The mitochondrial distribution may correspond to the Ca(2+) changes during meiotic maturation and parthenogenetic activation.  相似文献   

18.
CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1::GFP in oocytes and found that its degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first polar body would be extruded. In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase. However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly stimulates destruction of CSF during mammalian fertilisation.  相似文献   

19.
Microinjection of approximately 0.3 mug of calcium into maturing oocytes of Rana pipiens after nuclear dissolution resulted in cleavage-like constrictions, cortical granule breakdown, and formation of a structure resembling a two-cell embryo. Mg2+, Na+, or K+ did not induce any of these reactions. Larger amounts of Ca2+-induced contraction over the entire surface of oocytes or eggs, but did not induce cleavage-like constrictions; smaller amounts of Ca2+ produced either a local cortical granule reaction of the formation of one large and one small "blastomere." Furrow formation was not observed during normally induced maturation until after germinal vesicle breakdown. The location of microinjected Ca2+ determined the orientation of the resulting furrow. Ca2+-induced cortical granule breakdown occurred in full-grown nonmaturing oocytes near the site of injection. Cortical granule breakdown also occurred in maturing oocytes (after germinal vesicle breakdown but before second meiotic metaphase), but only in the blastomere containing the infected Ca2+. As expected, in mature oocytes (at second meiotic metaphase) cortical granule breakdown occurred over the entire oocyte surface, including both blastomeres. The results indicate that furrow formation and cleavage-like constrictions may be directly influenced by Ca2+, and that functional contractile elements are present near all areas of the oocyte surface. Furthermore, Ca2+ injection initiates localized cortical granule breakdown in full-grown immature and maturing oocytes.  相似文献   

20.
I report here that thapsigargin, an inhibitor of Ca(2+)-ATPase activities in internal Ca2+ stores, induces meiotic maturation in prophase I-arrested surf clam (Spisula solidissima) oocytes. The half-maximal dose for triggering germinal vesicle breakdown (GVBD) is 120 nM. Thapsigargin-induced GVBD is followed by all normal subsequent steps of meiotic maturation including extrusions of first and second polar bodies, with almost normal timing as compared with K(+)-induced activation. Thapsigargin-induced GVBD requires the presence of external Ca2+ at a half-maximal concentration of 0.6 mM. In normal sea water, thapsigargin-induced activation is accompanied by a slightly increased 45Ca2+ uptake by the oocytes and by an intracellular pH rise of 0.3 U. These results show that thapsigargin-sensitive Ca2+ pools regulating Ca2+ fluxes exist in surf clam oocytes, and they also further establish that Ca2+ ions are the major initial trigger for meiosis resumption in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号