首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of a double isotope experiment using 3H- and 14C-labeled leucine as precursors of protein synthesis demonstrated that the aldolase C to A subunit transition which is associated with chick skeletal muscle development involves the preferential synthesis of different aldolase isoenzymes. This developmental system was used to test for subunit exchange between aldolase tetramers in vivo. In a second double isotope experiment, it was found that the 14C:3H ratios of A and C subunits derived from the same heterotetramer were essentially identical, while the isotope ratios of the same subunit type derived from different isoenzymes were considerably different. Had subunit exchange between the isoenzymes occurred, A subunits of a given heterotetramer would have been expected to have higher isotope ratios than the corresponding C subunits. Therefore, these data suggest that subunit exchange between aldolase tetramers does not occur in vivo, at least not in skeletal muscle to an appreciable extent. The results of the present study suggest that all aldolase tetramers are constructed at the time of the initial assembly of newly synthesized subunits, that is, "new" tetramers would not be generated by subunit exchange between already constructed tetramers. In addition, the present work suggests that the degradation of all four subunits of an aldolase tetramer are coupled inasmuch as the subunits would not be reincorporated into other tetramers. Thus, in contrast to some other proteins, it appears that the subunits of the aldolase tetramer turn over coordinately.  相似文献   

2.
Two different isoenzymes of fructose-P2 aldolase can be resolved by chromatography of crude spinach leaf extracts on DEAE-cellulose columns. The acidic isoenzyme comprises about 85% of the total leaf aldolase activity. The two forms differ in primary structure as judged by their distinctive amino acid compositions, tryptic peptide patterns, and immunological properties. Only the acidic isoenzyme was detected in extracts of isolated chloroplasts, suggesting that this molecule represents the chloroplast form of spinach leaf aldolase while the basic isoenzyme is of cytosolic origin. The cytosolic (basic) isoenzyme and chicken aldolase A4 are similar in the following respects. 1) They have similar specific catalytic activity (10-15 units/mg); 2) they are both highly sensitive to inactivation by very limited digestion with bovine pancreatic carboxypeptidase A; 3) they both have subunit molecular weights of 40,000; 4) they both have derivatized (blocked) NH2-terminal structures; 5) they are both resistant to thermal denaturation at 50 degrees C; and 6) they both regain catalytic activity following reversible denaturation at pH 2.3 or in 5.8 M urea. Also, the cytosolic aldolase cross-reacted immunologically with the single aldolases present in spinach seeds and in wheat germ. Further, this isoenzyme readily "hybridized" with chicken aldolase A4 in vitro. These observations demonstrate the close homology between the cytosolic aldolases derived from plant and animal origins. The chloroplast aldolase had a specific catalytic activity of about 8 units/mg and, like its cytosolic counterpart, was severely inactivated by limited digestion with carboxypeptidase A. However, this isoenzyme was distinct from the cytosolic aldolase in the following characteristics: 1) its "small" subunit size (Mr congruent to 38,000); 2) its underivatized NH2-terminal structure; 3) its high sensitivity to thermal denaturation at 50 degrees C; and 4) its inability to refold into an enzymatically active conformation following denaturation at pH 2.3 or in 5.8 M urea. The distinctive properties of the chloroplast aldolase may be expected for an enzyme which is synthesized as a higher molecular weight precursor on cytosolic polysomes and is then proteolytically processed to the "mature" form during its migration into the chloroplast organelle.  相似文献   

3.
The present work describes the selective covalent modification of fructose bisphosphate aldolase in crude extracts of chicken breast muscle by fluorescein 5'-isothiocyanate (5'-FITC) at pH 7.0 and 35 degrees C. The modification was observed after 1 min while no other major soluble protein was labeled even after 30 min. We calculated that ca. one 5'-FITC molecule was incorporated into each aldolase tetramer after a 30 min reaction which resulted in a minimal loss of enzyme activity. The "native" structure of aldolase was required for the selective modification by 5'-FITC since high pH, high temperature, and ionic detergents either inhibited or prevented the reaction of 5'-FITC with aldolase. Certain metabolites (ATP, ADP, CTP, GTP, FBP) and erythrosin B also inhibited the 5'-FITC modification of aldolase. In contrast, F-6-P, AMP, NADH, and NAD(+) as well as free lysine and most importantly, the 6'-isomer of FITC exhibited no competition with 5'-FITC for the labeling of aldolase. Alone, the 6'-isomer of FITC did not exhibit preferential reaction when combined with aldolase. 5'-FITC-labeled and -unlabeled aldolases were not distinguished by their ability to bind to muscle myofibrils (MFs) or by their abilities to refold following reversible denaturation in urea. Structural analysis revealed that 5'-FITC-labeled a tryptic peptide corresponding to residues 112-134 in the primary structure of aldolase, a peptide that does not contain lysine, the amino acid believed to be the primary target of this reagent. Unlike chicken and rabbit muscle aldolases, chicken brain and liver aldolase isoforms along with several other aldolases derived from diverse biological sources did not exhibit this highly selective modification by 5'-FITC.  相似文献   

4.
C D Kent  H G Lebherz 《Biochemistry》1984,23(22):5257-5261
Using a highly sensitive "subunit exchange" assay, we have studied the relative strengths of interactions between different subunit types (A and C) of fructosediphosphate aldolase and have determined the mode of dissociation of aldolase tetramers in vitro. Interactions between C subunits within C4 tetramers were found to be considerably more resistant to disruption than were interactions between A subunits in A4 tetramers with regard to increasing concentrations of H+, OH-, or urea. Slight dissociation of A4 was also observed in 1.2 M magnesium chloride. These observations suggest that the quaternary structure of aldolase C4 is inherently more stable than that of aldolase A4. Also, the symmetrical heterotetramer A2C2 was found to be more resistant to urea-mediated dissociation than was the aldolase A4 homotetramer; this observation suggests that, even when in heteromeric combination, C subunits have a stabilizing influence on the quaternary structure of aldolase tetramers. In no case did we find evidence for a stable dimeric intermediate in the dissociation of aldolase tetramers to monomers. These observations are considered in terms of the tetrahedral arrangement of subunits in the aldolase tetramer. The general applicability of the subunit exchange assay described here for studying the subunit structure and mode of dissociation of oligomeric enzymes is discussed.  相似文献   

5.
We have been using the glycolytic enzyme fructose-bisphosphate aldolase (d-fructose-1,6-bisphosphate d-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13) as a model system to investigate the assembly of oligometric enzymes. In the present work we investigate the effect of specific, limited tryptic modification on the properties of aldolase isolated from what germ. The wheat-germ enzyme was selected, since several aldolases isolated from animal sources were not readily susceptible to the specific tryptic modification seen with this plant enzyme. We will show that: (1) Low levels of trypsin cause a first-order inactivation of wheat-germ aldolase activity which is associated with a fairly specific cleavage of the enzyme which reduces its subunit molecular weight from 41 000 to 39 000. (2) The proteolytic modification is greatly inhibited in the presence of the ladolase substrate, fructose biphosphate. (3) The intact and modified enzymes appear to have similar surface changes, as judged by their behavior during electrophoresis in polyacrylamide gels under non-denaturing conditions. (4) The modified aldolase is not specifically eluted from phosphocellulose columns by fructose bisphosphate under the conditions used in the affinity chromatographic isolation of the intact enzyme, suggesting that the modified enzyme may no longer be able to bind substrate. (5) Although enzymatically inactive, the modified aldolase subunits are able to refold and reassociate into tetrameric combinations following unfolding of the subunits by treatment at law pH; thus, this specific proteolytic modification does not interfere with the ability of wheat-germ aldolase subunits to refold and to establish precise subunit-subunit recognition in vitro.  相似文献   

6.
1. The kinetic properties of hybrids of native (or carboxypeptidase-treated) and citraconylated rabbit muscle aldolase are compared with those of equivalent mixtures of the parental enzymes. 2. In the hybrids, the native subunits function slightly less well than in the homotetramer, but the citraconylated subunits have enhanced activity. 3. Subunits of carboxypeptidase-treated aldolase behave essentially as expected in a hybrid environment, but the citraconylated subunits do not show the same enhancement of activity found in the hybrids of native and citraconylated enzyme. The apparent affinity for fructose 1,6-diphosphate of the citraconylated subunits in hybrids of carboxypeptidase-treated and citraconylated aldolase is increased. 4. These results are interpreted in terms of a substrate-induced conformational difference between native and carboxypeptidase-treated aldolase. 5. This conformational change can take place within a single native subunit in the hybrids and does not require a similar conformational change to occur simultaneously in the other three subunits.  相似文献   

7.
A fructose diphosphate aldolase has been isolated from ascarid muscle and crystallized by simple column chromatography and an ammonium sulfate fractionation procedure. It was found to be homogeneous on electrophoresis and Sephadex G-200 gel filtration. This enzyme has a fructose diphosphate/fructose 1-phosphate activity ratio close to 40 and specific activity for fructose diphosphate cleavage close to 11. Km values of ascarid aldolase are 1 × 10−6m and 2 × 10−3m for fructose diphosphate and fructose 1-phosphate, respectively. The enzyme reveals a number of catalytic and molecular properties similar to those found for class I fructose diphosphate aldolases. It has C-terminal functional tyrosine residues, a molecular weight of 155,000, and is inactivated by NaBH4 in presence of substrate. Data show the presence of two types of subunits in ascarid aldolase; the subunits have different electrophoretic mobilities but similar molecular weights of 40,000. Immunological studies indicate that the antibody-binding sites of the molecules of the rabbit muscle aldolase A or rabbit liver aldolase B are structurally different from those of ascarid aldolase. Hybridization studies show the formation of one middle hybrid form from a binary mixture of the subunits of ascarid and rabbit muscle aldolases. Hybridization between rabbit liver aldolase and ascarid aldolase was not observed. The results indicate that ascarid aldolase is structurally more related to the mammalian aldolase A than to the aldolase B.  相似文献   

8.
Subunit structure of rabbit brain aldolase   总被引:1,自引:0,他引:1  
Rabbit brain contains a mixture of aldolase A (muscle type) and aldolase C (brain type), present largely as the hybrid forms A3C, A2C2, and AC3, with smaller amounts of the homopolymers A4 and C4. We have developed new procedures for the isolation of the A-C hybrid set and the aldolase C subunits and compared the structure of these subunits with those of aldolase A. The two isoenzymes differ significantly in amino acid composition, but each contains three methionine residues per subunit and yields four peptides on cleavage with cyanogen bromide. The three methionine residues appear to occupy similar positions in the polypeptide chains but the molecular weight of the aldolase C subunit is only 37,000, approximately 10% smaller than that of the subunit of aldolase A. The difference is attributable to two or more deletions, totaling 30–40 amino acid residues, in two of the four BrCN peptides. The deletions include two of the buried cysteine residues that are located in the center of the polypeptide chain in aldolase A; these residues in aldolase A are, therefore, not involved in the contacts between the subunits in the tetramer. Aldolase C also lacks several of the histidine residues that are located near the active-site lysine residue of aldolase A, thus excluding these residues from participation in the catalytic mechanism.  相似文献   

9.
6-Phosphofructo-1-kinase (PFK) and aldolase are two sequential glycolytic enzymes that associate forming heterotetramers containing a dimer of each enzyme. Although free PFK dimers present a negligible activity, once associated to aldolase these dimers are as active as the fully active tetrameric conformation of the enzyme. Here we show that aldolase-associated PFK dimers are not inhibited by clotrimazole, an antifungal azole derivative proposed as an antineoplastic drug due to its inhibitory effects on PFK. In the presence of aldolase, PFK is not modulated by its allosteric activators, ADP and fructose-2,6-bisphosphate, but is still inhibited by citrate and lactate. The association between the two enzymes also results on the twofold stimulation of aldolase maximal velocity and affinity for its substrate. These results suggest that the association between PFK and aldolase confers catalytic advantage for both enzymes and may contribute to the channeling of the glycolytic metabolism.  相似文献   

10.
The level of functional mRNA coding for myofibrillar proteins was studied during development of the chicken skeletal muscle. RNA isolated from the developing chicken muscle directed protein synthesis in a wheat germ cell-free system. By means of polyacrylamide gel electrophoresis and immunological analysis, tropomyosin subunits and troponin components were identified among the cell-free translation products. The mRNA activities for alpha- and beta-subunit of tropomyosin were prominent in the embryonic breast muscle as well as in the embryonic leg muscle. At the early post-embryonic stage, the mRNA activity for beta-subunit disappeared from the breast muscle, while those for alpha- and beta-subunit were detectable in the leg muscle. Troponin-C and troponin-I synthesized in vitro in response to the muscle RNA formed a binary complex in the presence of calcium ion. Despite the observed difference in molecular weight between troponin-Ts in the breast and leg muscle, RNA preparations from the two muscles encoded identical troponin-Ts whose molecular weights were indistinguishable from that of troponin-T present in the breast muscle of adult chicken. It is suggested from these results that the biosynthesis of tropomyosin is regulated at the pre-translational level during the development of the chicken skeletal muscle, whereas post-translational (or co-translational) events may produce the tissue-specific form of troponin-T.  相似文献   

11.
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) is strongly inhibited by AMP in vitro and, therefore, at physiological concentrations of substrate and AMP, FBPase should be completely inhibited. Desensitization of rabbit muscle FBPase against AMP inhibition was previously observed in the presence of rabbit muscle aldolase. In this study, we analysed the kinetics of an FBPase catalyzed reaction and interaction between chicken muscle FBPase and chicken muscle aldolase. The initial rate of FBPase reaction vs. substrate concentration shows a maximum activity at a concentration of 20 microM Fru-1,6P2 and then decreases. Assuming rapid equilibrium kinetics, the enzyme-catalyzed reaction was described by the substrate inhibition model, with Ks approximately 5 microM and Ksi approximately 39 microM and factor beta approximately 0.2, describing change in the rate constant (k) of product formation from the ES and ESSi complexes. Based on ultracentrifugation studies, aldolase and FBPase form a hetero-complex with approximately 1:1 stoichiometry with a dissociation constant (Kd) of 3.8 microM. The FBPase-aldolase interaction was confirmed via fluorescence investigation. The aldolase-FBPase interaction results in aldolase fluorescence quenching and its maximum emission spectrum shifting from 344 to 356 nm. The Kd of the FBPase-aldolase complex, determined on the basis of fluorescence changes, is 0.4 microM at 25 degrees C with almost 1:1 stoichiometry. This interaction increases the I(0.5) for the AMP inhibition of FBPase threefold, and slightly affects FBPase affinity to magnesium ions, increasing the Ka and Hill coefficient (n). No effect of aldolase on the FBPase pH optimum was observed. Thus, the decrease in FBPase sensitivity to AMP inhibition enables FBPase to function in vivo thanks to aldolase.  相似文献   

12.
The crystal structure of human muscle aldolase at 3.0 A resolution   总被引:2,自引:0,他引:2  
The three-dimensional structure of fructose-1,6-bisphosphate aldolase from human muscle has been determined at 3.0 A resolution by X-ray crystallography. The active protein is a tetramer of 4 identical subunits each of which is composed of an eight-stranded alpha/beta-barrel structure. The lysine residue responsible for Schiff base formation with the substrate is located near the centre of the barrel in the middle of the sixth beta-strand. While the overall topology of the alpha/beta-barrel is very similar to those found in several other enzymes, the distribution of charged residues inside the core of the barrel seems distinct. The quaternary fold of human muscle aldolase uses interfacial regions also involved in the subunit association of other alpha/beta-barrel proteins found in glycolysis, but exploits these regions in a manner not seen previously.  相似文献   

13.
Aldolase was purified from rabbit liver by affinity-elution chromatography. By taking precautions to avoid rupture of lysosomes during the isolation procedure, a stable form of liver aldolase was obtained. The stable form of the enzyme had a specific activity with respect to fructose 1,6-bisphosphate cleavage of 20-28 mumol/min per mg of protein and a fructose 1,6-bisphosphate cleavage of 20-28mumol/min per mg of protein and a frutose 1,6-bisphosphate/fructose 1-phosphate activity ratio of 4. It was distinguishable from rabbit muscle aldolase, as previously isolated, on the basis of its electrophoretic mobility and N-terminal analysis. Muscle and liver aldolases were immunologically distinct. The stable liver aldolase was degraded with a lysosomal extract to a form with catalytic properties resembling those reported for aldolase B4. It is postulated that liver aldolase prepared by previously described methods has been modified by proteolysis and does not constitute the native form of the enzyme.  相似文献   

14.
15.
Characterization of the chicken aldolase B gene   总被引:6,自引:0,他引:6  
  相似文献   

16.
《The Journal of cell biology》1987,105(6):2649-2654
The glycolytic enzymes of Trypanosomatids are compartmentalized within peroxisome-like microbodies called glycosomes. Fructose bisphosphate aldolase is synthesized on free polysomes and imported into glycosomes within 5 min. Peptide mapping reveals no primary structural differences between the in vivo-synthesized protein and that made in vitro from a synthetic template. However, native aldolase from glycosomes is partially protease resistant, whereas the in vitro translation product is not. Pulse-chase results indicate that aldolase in bloodstream trypanosomes has a much longer half-life than in the procyclic tsetse fly form.  相似文献   

17.
A rat brain S100-binding protein, R40,000, has been isolated, characterized, and identified as fructose-1,6-bisphosphate aldolase. R40,000 was purified by ammonium sulfate precipitation, hydroxylapatite chromatography, dye-binding chromatography, and electroelution from sodium dodecyl sulfate-polyacrylamide gels. Microsequence analysis of a fragment of R40,000 revealed a 15-residue amino acid sequence which shows a high degree of homology to the amino acid sequence of fructose-1,6-bisphosphate aldolase from rabbit muscle and rat liver. Further characterization demonstrated that R40,000 has an amino acid composition, subunit molecular weight, and cyanogen bromide map similar to aldolase. In addition, purified aldolase interacts with S100 alpha and S100 beta by gel overlay, and aldolase enzyme activity is stimulated 2-fold in vitro by S100 alpha and S100 beta. S100 interacts predominantly with the C or brain-specific form of the enzyme in gels and stimulates the activity of the C-enriched form of the enzyme in a calcium-dependent manner. Altogether, these data suggest that fructose-1,6-bisphosphate aldolase may be an intracellular target of S100 action in brain.  相似文献   

18.
Rakus D  Pasek M  Krotkiewski H  Dzugaj A 《Biochemistry》2004,43(47):14948-14957
Fructose 1,6-bisphosphatase (FBPase) is known to form a supramolecular complex with alpha-actinin and aldolase on both sides of the Z-line in skeletal muscle cells. It has been proposed that association of aldolase with FBPase not only desensitizes muscle FBPase toward AMP inhibition but it also might enable the channeling of intermediates between the enzymes [Rakus et al. (2003) FEBS Lett. 547, 11-14]. In the present paper, we tested the possibility of fructose 1,6-bisphosphate (F1,6-P(2)) channeling between aldolase and FBPase using the approach in which an inactive form of FBPase competed with active FBPase for binding to aldolase and thus decreased the rate of aldolase-FBPase reaction. The results showed that F1,6-P(2) is transferred directly from aldolase to FBPase without mixing with the bulk phase. Further evidence that F1,6-P(2) is channeled from aldolase to FBPase comes from the experiments investigating the inhibitory effect of a high concentration of magnesium ions on aldolase-FBPase activity. FBPase in a complex with aldolase, contrary to free muscle FBPase, was not inhibited by high Mg(2+) concentrations, which suggests that free F1,6-P(2) was not present in the assay mixture during the reaction. A real-time interaction analysis between aldolase and FBPase revealed a dual role of Mg(2+) in the regulation of the aldolase-FBPase complex stability. A physiological concentration of Mg(2+) increased the affinity of muscle FBPase to muscle aldolase, whereas higher concentrations of the cation decreased the concentration of the complex. We hypothesized that the presence of Mg(2+) stabilizes a positively charged cavity within FBPase and that it might enable an interaction with aldolase. Because magnesium decreased the binding constant (K(a)) between aldolase and FBPase in a manner similar to the decrease of K(a) caused by monovalent cations, it is postulated that electrostatic attraction might be a driving force for the complex formation. It is presumed that the biological relevance of F1,6-P(2) channeling between aldolase and FBPase is protection of this glyconeogenic, as well as glycolytic, intermediate against degradation by cytosolic aldolase, which is one of the most abundant enzyme of glycolysis.  相似文献   

19.
Experimental conditions for the molecular hybridization in vitro between iodine and native subunits of isoenzymes 1 and 5 of lactate dehydrogenase (LDH) are described. It is also shown that the covalently fixed on the polyacrylamide beads rat J125 labelled LDH-5 and J125 labelled aldolase A, under conditions of complete dissociation of the quaternary structure of these enzymes, only one of the four subunits remain bound with the beads. Subunit of LDH-5, which is covalently bound with the polyacrylamide beads, is capable to hybridize (reassociated) with 3 native subunits. In addition, the immobilized LDH-5 subunits and aldolase A are capable to hybridize with J125 labelled subunits of these enzymes. Thus, when thyrosine, lysine and N-terminal amino acids are modified, subunits of LDH-5 and aldolase A retain their capacity to restore their quaternary structures.  相似文献   

20.
Brownian dynamics (BD) simulations test for channeling of the substrate, glyceraldehyde 3-phosphate (GAP), as it passes between the enzymes fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). First, BD simulations determined the favorable complexes between aldolase and GAPDH; two adjacent subunits of GAPDH form salt bridges with two subunits of aldolase. These intermolecular contacts provide a strong electrostatic interaction between the enzymes. Second, BD simulates GAP moving out of the active site of the A or D aldolase subunit and entering any of the four active sites of GAPDH. The efficiency of transfer is determined as the relative number of BD trajectories that reached any active site of GAPDH. The distribution functions of the transfer time were calculated based on the duration of successful trajectories. BD simulations of the GAP binding from solution to aldolase/GAPDH complex were compared to the channeling simulations. The efficiency of transfer of GAP within an aldolase/GAPDH complex was 2 to 3% compared to 1.3% when GAP was binding to GAPDH from solution. There is a preference for GAP channeling between aldolase and GAPDH when compared to binding from solution. However, this preference is not large enough to be considered as a theoretical proof of channeling between these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号