首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to investigate systematically the effects of various single and multiple cis carbon-carbon double bonds in the sn-2 acyl chains of natural phospholipids on membrane properties, we have de novo synthesized unsaturated C20 fatty acids comprised of single or multiple methylene-interrupted cis double bonds. Subsequently, 15 molecular species of phosphatidylethanolamine (PE) with sn-1 C20-saturated and sn-2 C20-unsaturated acyl chains were semi-synthesized by acylation of C20-lysophosphatidylcholine with unsaturated C20 fatty acids followed by phospholipase D-catalyzed base-exchange reaction in the presence of excess ethanolamine. The gel-to-liquid crystalline phase transitions of these 15 mixed-chain PE, in excess H2O, were investigated by high resolution differential scanning calorimetry. In addition, the energy-minimized structures of these sn-1 C20-saturated/sn-2 C20-unsaturated PE were simulated by molecular mechanics calculations. It is shown that the successive introduction of cis double bonds into the sn-2 acyl chain of C(20):C(20)PE can affect the gel-to-liquid crystalline phase transition temperature, Tm, of the lipid bilayer in some characteristic ways; moreover, the effect depends critically on the position of cis double bonds in the sn-2 acyl chain. Specifically, we have constructed a novel Tm diagram for the 15 species of unsaturated PE, from which the effects of the number and the position of cis double bonds on Tm can be examined simultaneously in a simple, direct, and unifying manner. Interestingly, the characteristic Tm profiles exhibited by different series of mixed-chain PE with increasing degree of unsaturation can be interpreted in terms of structural changes associated with acyl chain unsaturation.  相似文献   

2.
The pem1/cho2 pem2/opi3 double mutant of Saccharomyces cerevisiae, which is auxotrophic for choline because of the deficiency in methylation activities of phosphatidylethanolamine, grew in the presence of 0.1 mM dioctanoyl-phosphatidylcholine (diC(8)PC). Analysis of the metabolism of methyl-(13)C-labeled diC(8)PC ((methyl-(13)C)(3)-diC(8)PC) by electrospray ionization tandem mass spectrometry (ESI-MS/MS) revealed that it was rapidly converted to (methyl-(13)C)(3)-PCs containing C16 or C18 acyl chains. (Methyl-(13)C)(3)-8:0-lyso-PC, (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC, which are the probable intermediate molecular species of acyl chain remodeling, appeared immediately after 5 min of pulse-labeling and decreased during the subsequent chase period. These results indicate that diC(8)PC was taken up by the pem1 pem2 double mutant and that the acyl chains of diC(8)PC were exchanged with longer yeast fatty acids. The temporary appearance of (methyl-(13)C)(3)-8:0-lyso-PC suggests that the remodeling reaction may consist of deacylation and reacylation by phospholipase activities and acyltransferase activities, respectively. The detailed analyses of the structures of (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC by MS/MS and MS(3) strongly suggest that most (methyl-(13)C)(3)-8:0-16:0-PCs have a C16:0 acyl chain at sn-1 position, whereas (methyl-(13)C)(3)-8:0-16:1-PCs have a C16:1 acyl chain at either sn-1 or sn-2 position in a similar frequency, implying that the initial C16:0 acyl chain substitution prefers the sn-1 position; however, the C16:1 acyl chain substitution starts at both sn-1 and sn-2 positions. The current study provides a pivotal insight into the acyl chain remodeling of phospholipids in yeast.  相似文献   

3.
Remodeling of rat hepatocyte phospholipids by selective acyl turnover   总被引:2,自引:0,他引:2  
Acyl turnover of rat hepatocyte phospholipids and triacylglycerols was assessed by incubating the cells in media containing 40% H2(18)O and measuring the time-dependent incorporation of 18O into ester carbonyls by gas chromatography-mass spectrometry of hydrogenated methyl esters. Incorporation of 18O into 22-carbon acyl groups was low in phosphatidylcholine, phosphatidylinositol, and phosphatidylserine, whereas in phosphatidylethanolamine, it was about the same as in the other acyl groups. Incorporation of 18O into individual molecular species of phosphatidylcholine and phosphatidylethanolamine was determined after phospholipase C hydrolysis, derivatization to dinitrobenzoates, and separation by high-performance liquid chromatography. In most molecular species, acyl groups at the sn-1 and sn-2 positions became 18O-labeled at drastically different rates, indicating remodeling through deacylation-reacylation. Molecular species expected to arise de novo from acylation of glycerophosphate exhibited similar rates of 18O incorporation at the sn-1 and sn-2 positions. The data suggest that hepatocyte phospholipids are continually synthesized, remodeled by deacylation-reacylation at specific turnover rates up to 10-15%/h, and degraded. This acyl turnover probably does not involve the majority of intracellular unesterified fatty acids whose 18O incorporation was found to be very low. In contrast, the oxygens of extracellular unesterified fatty acids were readily exchanged with the media. This exchange was enzyme-catalyzed, possibly by lipases released into the media from damaged cells. Incorporation of 18O into exogenously added fatty acids was also rapid and resulted in enhanced uptake of 18O-labeled fatty acids into cellular lipids, primarily triacylglycerols and phosphatidylcholine, without drastic change of the intracellular free fatty acid pool.  相似文献   

4.
The partitioning of phosphatidylcholine (PC) molecular species between mixed micelles and vesicles was studied in each of seven human gallbladder biles. Biles were fractionated by Sephacryl S-300 SF gel filtration chromatography, and PC species in the micellar and vesicular fractions were quantitated by high performance liquid chromatography. Micelles were enriched in species containing unsaturated acyl groups (e.g., 16:1-18:2, 18:1-18:2, and 18:1-18:3); vesicles were enriched in more highly saturated species (e.g., 16:0-16:1, 16:0-18:1, and 18:0-18:1). Separate multivariate analyses for each bile demonstrated that the distribution of PC species between vesicles and micelles was related to the degree of sn-1 and sn-2 unsaturation, and sn-1, but not sn-2, chain length. In addition, the tendency to partition into the micellar phase was particularly marked when unsaturation was present at both the sn-1 and sn-2 positions. When this interaction was included in the multivariate analyses, the regression models accounted for virtually all of the variation in PC partitioning (for each of the seven patients r2 = 0.92-0.98, P less than 0.03). These results suggest that the partitioning of PC species between micelles and vesicles is strictly determined by sn-1 chain length and the degree of unsaturation at both the sn-1 and sn-2 positions. In light of recent reports that fatty acyl composition influences the cholesterol content of vesicles and micelles in model biles, these results raise the possibility that diet-induced alterations in the phospholipid species and the relative proportions of biliary lipid particles may influence the cholesterol-carrying capacity of bile.  相似文献   

5.
Mammalian phosphatidylinositol transfer protein alpha (PITP) is an intracellular lipid transporter with a binding site that can accommodate a single molecule of phosphatidylinositol (PI) or phosphatidylcholine (PC). Phospholipids are a heterogeneous population of molecular species that can be distinguished by their characteristic headgroups as well as their acyl chains at the sn-1 and sn-2 position. In this study, we have defined the acyl chain preference for PITPalpha when presented with a total population of cellular lipids. Recombinant PITPalpha loaded with bacterial lipid, phosphatidylglycerol (PG), was incubated with permeabilised HL60 cells, followed by recovery of PITPalpha by affinity chromatography. Lipids extracted from the PITPalpha were analysed by tandem electrospray ionisation mass spectrometry (ESI-MS) and showed total exchange of acquired bacterial lipids for HL60 cellular PI and PC. Detailed comparison of the molecular species composition of bound phospholipids with those in whole cells permitted the assessment of selectivity of acyl chain binding. For both phospholipid classes, progressive fractional enrichments in bound species possessing shorter acyl chains were apparent with a preference order: 16:1>16:0>18:1>18:0>20:4. A recapitulation of this specificity order was also seen from a dramatically altered range of molecular species present in HL60 cells enriched with arachidonate over many weeks of culture. We speculate that short-chain, saturate-binding preferences under both conditions may reflect properties in vivo. This is consistent with target cell membranes actively remodelling newly delivered phospholipids after transport rather than relying on the transport of the specific molecular species conventionally found in mammalian membranes.  相似文献   

6.
Our previous works have demonstrated that fast atom bombardment tandem mass spectrometry can be a valuable tool in determining the complete structure of glycoglycerolipids and glycerophospholipids. Collision-induced dissociation of sodium-adducted molecular ions ([M + Na]+ or [M - H + 2Na]+) generates diverse product ions informative on the double-bond position in fatty acyl groups as well as the polar head group and fatty acid composition. Here we report that this direct and rapid method can be applied to the structural determination of individual molecular species of each glycerolipid class purified from the total lipid extract of cyanobacterium Synechocystis sp. PCC 6803. Especially, based on the preference for the loss of the fatty acyl group positioned at the sn-2, it was proved that all of the molecular species of diacylglycerolipids contained a palmitoyl group exclusively at the sn-2 position. Additionally, lysoglycerolipids, monoacyl forms of four major membrane diacylglycerolipids, were first isolated together from a fresh extract. Using fast atom bombardment mass spectrometry and tandem mass spectrometry, it was found that each lysoglycerolipid had a molecular species with only palmitic acid as a fatty acyl group. Thus, these compounds could be synthesized by specific enzyme-catalyzed hydrolysis of the sn-1 fatty acyl group of the corresponding diacylglycerolipids.  相似文献   

7.
用高效液相色谱法和酶解的方法检测了银杏叶片磷脂酰甘油(PG)脂肪酸的分子种组成和位置分布,确定银杏叶片PG主要分子种的脂肪酸组成(sn-1/sn-2)是18:3/16:1(3t),18:3/16:0,18:2/16:1(3t),18:2/16:0,18:1/16:1(3t),16:0/16:1(3t),18:1/18:1,18:/16:0和16:0和16:0/16:0。银杏叶片PC脂肪酸组成和位置分布的分析结果表明,C18脂肪酸主要位于sn-l位,16:1(3t)只分布于sn-2位,16:0在sn-1位和sn-2位上均有发现。sn-1位上的不饱和度∑u大于sn-2位上的∑u。  相似文献   

8.
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly applied to lipids. However, positional acyl chain analysis of lipids by MALDI was so far scarcely described. In this paper, the fragmentation behavior of phosphatidylethanolamine (PE) is investigated by using post-source decay (PSD) MS. In dependence on the investigated adduct, significant differences could be obtained. It will be shown that in particular the negative ion spectra enable the determination of the individual acyl chains as well as their positions (sn-1 or sn-2). Therefore, MALDI-TOF PSD spectra are a real alternative to more sophisticated MS/MS methods.  相似文献   

9.
杨淼  孟迎迎  褚亚东  薛松 《植物学报》2018,53(6):812-828
以模式藻株莱茵衣藻(Chlamydomonas reinhardtii)为材料, 基于液质联用技术对其极性甘油酯组进行定性定量分析。通过综合利用UPLC-ESI-Q-Trap/MS的一级质谱扫描(中性丢失或母离子扫描)及UPLC-ESI-Orbitrap/MS2的二级碎片信息扫描, 共鉴定出109种极性甘油酯分子; 再通过外标法利用UPLC-ESI-Q-Trap/MS在多级反应监测模式下对各分子进行靶向定量分析。结果表明, 莱茵衣藻的极性脂以糖脂MGDG、DGDG及甜菜碱脂DGTS为主, 所有极性脂的分子组成表明, DGDG、SQDG、DGTS及PI是C18脂肪酸的去饱和载体。该研究利用液质联用技术建立了莱茵衣藻极性甘油酯组的结构图谱及定量分析技术平台, 为微藻极性脂生物学功能及脂质代谢研究奠定了基础。  相似文献   

10.
The aim of the present study was to characterize a new lipid detected in the opportunistic pathogen Corynebacterium amycolatum. It was identified as acyl-phosphatidylinositol (acyl-PI), and revealed as a mixture of homologues compounds by electrospray ionization mass spectrometry, with pseudomolecular ions, (M-H)-, observed at 1099 (the major one) 1113, and 1127. Acyl-PI exclusively contained octadecenoyl on the inositol moiety (as 3-O-acyl), an unsaturated fatty acyl (mostly octadecenoyl) at sn-1 position of the glycerol and a saturated fatty acyl (mainly hexadecanoyl) at the sn-2 position. Acyl-PI constitutes a new natural substance and seems to be unique among the phospholipids of C. amycolatum. Other more complex molecules, previously undetected, and assigned in this work to several acyl forms of phosphatidylinositol trimannosides, lacked octadecenoyl in their polar heads. The present study reveals the existence of acyl-PI in C. amycolatum as rather unexpected finding and, additionally, gives evidence for the ability of this species to synthesize a great variety of inositol-containing phospholipids.  相似文献   

11.
Although oxylipins can be synthesized from free fatty acids, recent evidence suggests that oxylipins are components of plastid-localized polar complex lipids in Arabidopsis (Arabidopsis thaliana). Using a combination of electrospray ionization (ESI) collisionally induced dissociation time-of-flight mass spectrometry (MS) to identify acyl chains, ESI triple-quadrupole (Q) MS in the precursor mode to identify the nominal masses of complex polar lipids containing each acyl chain, and ESI Q-time-of-flight MS to confirm the identifications of the complex polar lipid species, 17 species of oxylipin-containing phosphatidylglycerols, monogalactosyldiacylglycerols (MGDG), and digalactosyldiacylglycerols (DGDG) were identified. The oxylipins of these polar complex lipid species include oxophytodienoic acid (OPDA), dinor-OPDA (dnOPDA), 18-carbon ketol acids, and 16-carbon ketol acids. Using ESI triple-Q MS in the precursor mode, the accumulation of five OPDA- and/or dnOPDA-containing MGDG and two OPDA-containing DGDG species were monitored as a function of time in mechanically wounded leaves. In unwounded leaves, the levels of these oxylipin-containing complex lipid species were low, between 0.001 and 0.023 nmol/mg dry weight. However, within the first 15 min after wounding, the levels of OPDA-dnOPDA MGDG, OPDA-OPDA MGDG, and OPDA-OPDA DGDG, each containing two oxylipin chains, increased 200- to 1,000-fold. In contrast, levels of OPDA-hexadecatrienoic acid MGDG, linolenic acid (18:3)-dnOPDA MGDG, OPDA-18:3 MGDG, and OPDA-18:3 DGDG, each containing a single oxylipin chain, rose 2- to 9-fold. The rapid accumulation of high levels of galactolipid species containing OPDA-OPDA and OPDA-dnOPDA in wounded leaves is consistent with these lipids being the primary products of plastidic oxylipin biosynthesis.  相似文献   

12.
Anandamide is an endogenous signaling lipid that binds to and activates cannabinoid receptors in the brain and peripheral tissues. The endogenous precursors of anandamide, N-arachidonoyl phosphatidylethanolamines (NArPEs), are a family of complex glycerophospholipids that derive from the exchange reaction of an arachidonoyl group between the sn-1 position of phosphatidylcholine and the primary amine of phosphatidylethanolamine catalyzed by N-acyl transferase activity. A precise characterization of the molecular composition of NArPE species generating anandamide has not yet been reported. In the present study, using liquid chromatography coupled to electrospray ionization ion-trap mass spectrometry, we identified the major endogenous NArPE species, which mainly contained sn-1 alkenyl groups (C16:0, C18:0, C18:1) and monounsaturated (C18:1) or polyunsaturated (C20:4, C22:4, C22:6) acyl groups at the sn-2 position of the glycerol backbone. Using rat brain particulate fractions, we observed a calcium-dependent increase in both NArPEs and anandamide formation after incubation at 37 degrees C for 30 min. Furthermore, a targeted lipidomic analysis showed that Ca(2+) specifically stimulated the formation of PUFA-containing NArPE species. These results reveal a previously unrecognized preference of brain N-acyl transferase activity for polyunsaturated NArPE and provide new insights on the physiological regulation of anandamide biosynthesis.  相似文献   

13.
Inositol lipids account for 15% of the total cellular phospholipids of Leishmania donovani promastigotes. Four major inositol lipids were identified and characterized: phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P), phosphatidylinositol diphosphate (PI-P2), and an inositol sphingophospholipid (InSL). Diacyl and alkyl acyl PI were identified. The major esterified fatty acids of PI, PI-P, and PI-P2 were similar and unlike those of mammalian inositol glycerolipids. Leishmania inositol glycerolipids contained only trace amounts of arachidonic acid; the major species were C16 and C18 acids. The InSL comprised about 40% of the inositol lipids. The amide-linked fatty acids of InSL were mainly C16 and C18 acids. Differential hydrolysis and nuclear magnetic resonance spectrometry indicated that the InSL had a phosphoryl bond. The major long chain bases of the InSL were identified by gas-liquid chromatography and high resolution mass spectrometry as straight chain C16 and C18 sphingosines. The finding of InSL in Leishmania is of interest because InSL have previously been found only in plants and fungi. Metabolic radiolabeling experiments suggest that this lipid may be a precursor of an antigenic cell surface membrane lipophosphoglycan which is shed into the culture medium by the organism.  相似文献   

14.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Delta9cis and C18:1 Delta11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

15.
Recent work within our laboratory has focused on the enzymes we hypothesize are involved in the biosynthesis of bis(monoacylglycerol)phosphate from phosphatidylglycerol. Here we describe a transacylase, active at acidic pH values, isolated from a macrophage-like cell line, RAW 264.7. This enzyme acylates the head group glycerol of sn-3:sn-1' lysophosphatidylglycerol to form sn-3:sn-1' bis(monoacylglycerol)phosphate. Here we demonstrate that this enzyme uses two lysophosphatidylglycerol molecules, one as an acyl donor and another as an acyl acceptor, and that the acyl contributions from all other lipids tested are comparatively minor. This enzyme prefers saturated acyl chains to monounsaturates, 16 and 18 carbon fatty acids over 14 carbon fatty acids, and saturated acyl chains at the sn-1 position to monounsaturated acyl chains on the sn-2 carbon of lysophosphatidylglycerol. We present data which show the transacylase activity depends on the presence of a lipid-water interface and the lipid polymorphic state.  相似文献   

16.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Δ9cis and C18:1 Δ11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

17.
A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.  相似文献   

18.
Lipid rafts are functional microdomains enriched with sphingolipids and cholesterol. The fatty acyl chain composition of sphingolipids is a critical factor in the localization of lipids in lipid rafts. The recent studies suggest that lipid rafts are more heterogeneous than previously thought. In addition, our discovery of a new glycolipid, phosphatidylglucoside (PtdGlc), also supports the notion of raft heterogeneity. The complete structural characterization of PtdGlc shows that it consists solely of saturated fatty acyl chains: C18:0 at the sn-1 and C20:0 at the sn-2 positions of the glycerol backbone. This unique fatty acyl composition comprising a single molecular species rarely occurs in known mammalian lipids. Although the structure of PtdGlc is similar to that of phosphatidylinositol, PtdGlc localizes to the outer leaflet of the plasma membrane and is possibly involved in cell-cell interaction signaling in the central nervous system.  相似文献   

19.
In expanding pea leaves, over 95% of fatty acids (FA) synthesized in the plastid are exported for assembly of eukaryotic glycerolipids. It is often assumed that the major products of plastid FA synthesis (18:1 and 16:0) are first incorporated into 16:0/18:1 and 18:1/18:1 molecular species of phosphatidic acid (PA), which are then converted to phosphatidylcholine (PC), the major eukaryotic phospholipid and site of acyl desaturation. However, by labeling lipids of pea leaves with [(14)C]acetate, [(14)C]glycerol, and [(14)C]carbon dioxide, we demonstrate that acyl editing is an integral component of eukaryotic glycerolipid synthesis. First, no precursor-product relationship between PA and PC [(14)C]acyl chains was observed at very early time points. Second, analysis of PC molecular species at these early time points showed that >90% of newly synthesized [(14)C]18:1 and [(14)C]16:0 acyl groups were incorporated into PC alongside a previously synthesized unlabeled acyl group (18:2, 18:3, or 16:0). And third, [(14)C]glycerol labeling produced PC molecular species highly enriched with 18:2, 18:3, and 16:0 FA, and not 18:1, the major product of plastid fatty acid synthesis. In conclusion, we propose that most newly synthesized acyl groups are not immediately utilized for PA synthesis, but instead are incorporated directly into PC through an acyl editing mechanism that operates at both sn-1 and sn-2 positions. Additionally, the acyl groups removed by acyl editing are largely used for the net synthesis of PC through glycerol 3-phosphate acylation.  相似文献   

20.
Glycosyl phosphatidylinositol lipids of cultured L.mex, mexicana LV732 promastigotes, T. cruzi Peru epimastigotes and Tritrichomonas foetus have been isolated and characterized using metabolic labelling and chromatographic and mass spectrometric (MS) techniques. TLC of the unsaponifiable lipid fractions of L. mex. mexicana and T. cruzi obtained from DEAE Sephadex A-25 followed by Iatrobead column chromatography showed three inositol phosphate-containing lipid components. [3H]myo-inositol, [3H]palmitic acid or H3 32PO4 lipid precursors were incorporated into these three lipid components. Fraction 2 (LM2 and TCP-2) comprises inositol phosphate ceramides. The other two fractions appear to contain mono-O-alkyl and di-O-alkyl glycerol inositol phosphates. Lyso-1-O-alkyl phosphatidylinositols could be cleaved by treatment of PI-specific phosphalipase C. The di-O-alkyl-phospho inositols of these parasites being the first dialkylglycerol lipids reported from eukaryotic membranes raises the possibility of chemotherapy for leishmaniasis and trypanosomiasis based upon functional impairment of alkyl ether lipids. Tritrichomonas foetus contains two major glycophosphosphingolipids, designated TF1 and TF2, which are metabolically labelled with [3H]myo-inositol and H3 32PO4. Both lipids contained ceramides. The major ceramide contains the 18:0 and 18:1 bases and 16:0 N-acyl group. The major glycolipid fraction (TF1) contains fucose linked to inositol diphosphate; one of the phosphates being linked to the ceramide moiety, and the other to ethanolamine. TF1 appears to be a novel class of glycophosphosphingolipid, which may be a part of a membrane anchor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号