首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Our purpose was to determine the effect of eight different combinations of contraction intensity, duration, and rest on the rate of fatigue in vastus lateralis muscle. A single combination consisted of contractions at 30 or 70% maximal voluntary contraction (MVC), held for 3 or 7 s with 3- or 7-s rest intervals. Contractions were repeated until the subject could not hold the force for the requisite duration. At regular intervals during each experiment, a brief MVC, a single twitch, and the response to eight stimulation pulses at 50 Hz were elicited. The rate of fatigue was the rate of decline of MVC calculated from regression analysis. Mean rate of fatigue (n = 8) ranged from 0.3 to 25% MVC/min and was closely related (r = 0.98) to the product of the relative force and the duty cycle. Force from 50 Hz stimulation fell linearly and in parallel with MVC. Twitch force was first potentiated and then fell twice as fast as 50 Hz stimulation and MVC (p less than 0.05). Differentiated twitch contraction and relaxation rates were higher at potentiation and lower at the limit of endurance, compared with control values (p less than 0.05). The maximal electromyogram decreased 25% and the submaximal EMG increased to maximal by the end of the protocol, indicating that the entire motor unit pool had been recruited. The close relation between rate of fatigue and the force x time product probably reflects the off-setting interaction of contraction amplitude, duration, and rest interval. This occurs despite the changes in twitch characteristics and the apparent recruitment of fast fatiguing motor units.  相似文献   

3.
The endurance during sustained contraction of elbow, flexors, elbow extensors, and back extensors was tested in 3 human subjects. The force level used was varied between ca. 15 and ca. 75% of maximal isometric strength (IS). The clearance of 133Xe from contracting muscles was registered during and after the endurance test. In this way it was possible to determine whether muscle blood flow (MBF) was increased or had stopped during the contraction. Experiments with artificial ischaemia of the upper arm together with MBF measurements showed that MBF was of no importance for continuing sustained contractions above a certain force level, which was 50,25, and 40% of IS for elbow flexors, elbow extensors and back extensors, respectively. However, the level, where longer lasting ( greater than 15 min) sustained contraction is possible is directly related to MBF. These levels were 22, 15, and 20% IS for elbow flexors, elbow extensors, and back extensors, respectively.  相似文献   

4.
Electromyographic models to assess muscle fatigue   总被引:1,自引:0,他引:1  
Muscle fatigue is a common experience in daily life. Many authors have defined it as the incapacity to maintain the required or expected force, and therefore, force, power and torque recordings have been used as direct measurements of muscle fatigue. In addition, the measurement of these variables combined with the measurement of surface electromyography (sEMG) recordings (which can be measured during all types of movements) during exercise may be useful to assess and understand muscle fatigue. Therefore, there is a need to develop muscle fatigue models that relate changes in sEMG variables with muscle fatigue. However, the main issue when using conventional sEMG variables to quantify fatigue is their poor association with direct measures of fatigue. Therefore, using different techniques, several authors have combined sets of sEMG parameters to assess muscle fatigue. The aim of this paper is to serve as a state-of-the-art summary of different sEMG models used to assess muscle fatigue. This paper provides an overview of linear and non-linear sEMG models for estimating muscle fatigue, their ability to assess power loss and their limitations due to neuromuscular changes after a training period.  相似文献   

5.
6.
The change in median frequency of the power spectrum of the electromyographic (EMG) signal may be used as a measure of muscle fatigue. The reliability of the median frequency parameters was investigated for EMG-recording sites at L1 and L5 right and left on the erector spinae. The reliability of subjective fatigue ratings of the back muscles (Borg CR-10 scale) and of maximal trunk extension torque (MVC) was also investigated. Eleven subjects with healthy backs performed a 45-s isometric trunk extension at 80% of MVC twice a day, on three different days. Two-factor analysis of variance was made to obtain the different variances from which the standard error of measurement (SEM) and the intra class correlation coefficient (ICC) were calculated. The SEM within-day was somewhat lower than that between-days. Both were about the same at all four electrode sites. The 95% confidence interval for the studied variables was for the initial median frequency +/- 10 Hz, for the slope +/- 0.4-0.5%/s, for the MVC +/- 36 Nm and for the Borg ratings +/- 1.6. We conclude that, with the presently used method, changes or differences within these limits should be regarded as normal variability. The slope may be of limited value because of its large variability. Whether the low intraclass correlation coefficient for the EMG parameters in the presently studied test group implies a low potential in discriminating subjects with back pain can not be decisively concluded.  相似文献   

7.
The purpose of the study was to explore changes in the spatial distribution of erector spinae electromyography amplitude during static, sustained contractions and during contractions of increasing load. Surface electromyographic (EMG) signals were detected from nine healthy subjects using a grid of 13 × 5 electrodes placed unilaterally over the lumbar erector spinae musculature. Subjects stood in a 20° forward flexed position and performed: (1) six 20-s long contractions with loads ranging from 2.5 kg to 12.5 kg (2.5 kg increments) and (2) a 6 min sustained contraction with 7.5 kg load. Root mean square (RMS) and mean power spectral frequency (MNF) were computed from the recorded EMG signals. EMG RMS increased (P < 0.0001) and MNF remained constant during contractions of increased load. During the sustained contraction, MNF decreased (P < 0.0001) and RMS did not change over time. The centroid (center of activity) of the RMS map shifted caudally (P < 0.0001) with time during the sustained contraction but did not change with varying load. These results suggest a change in the distribution of erector spinae muscle activity with fatigue and a uniform distribution of muscle activation across loads.  相似文献   

8.
The study compared the distribution of electromyographic (EMG) signal amplitude in the upper trapezius muscle in 10 women with fibromyalgia and in 10 healthy women before and after experimentally-induced muscle pain. Surface EMG signals were recorded over the right upper trapezius muscle with a 10 × 5 grid of electrodes during 90° shoulder abduction sustained for 60 s. The control subjects repeated the abduction task following injections of isotonic and hypertonic (painful) saline into the upper trapezius muscle. The EMG amplitude was computed for each electrode pair and provided a topographical map of the distribution of muscle activity. The pain level rated by the patients at the beginning of the sustained contraction was 5.9 ± 1.5. The peak pain intensity for the control group following the injection of hypertonic saline was 6.0 ± 1.6. During the sustained contractions, the EMG amplitude increased relatively more in the cranial than caudal region of the upper trapezius muscle for the control subjects (shift in the distribution of EMG amplitude: 2.3 ± 1.3 mm; P < 0.01). The patient group showed lower average EMG amplitude than the controls during the contraction (P < 0.05) and did not show different changes in EMG amplitude between different regions of the upper trapezius. A similar behavior was observed for the control group following injection of hypertonic saline. The results indicate that muscle pain prevents the adaptation of upper trapezius activity during sustained contractions as observed in non-painful conditions, which may induce overuse of similar muscle compartments with fatigue.  相似文献   

9.
The decline in force generating capabilities of skeletal muscle associated with prolonged, repetitive low force producing contractions does have a biochemical basis. It is our view that an alteration in neuromuscular transmission results in an uncoupling of excitation-contraction via disturbances in Ca2+ imbalance, an uncoupling of energy utilization and production may result, which affect a favourable cellular environment for the initiation of myofilament degradation. The myofilament dissolution may be the last stage in this fatigue process and associated with only extreme conditions of muscle use.  相似文献   

10.
The present study shows a new computational FEM technique to simulate the evolution of the mechanical response of 3D muscle models subjected to fatigue. In an attempt to obtain very realistic models, parameters needed to adjust the mathematical formulation were obtained from in vivo experimental tests. The fatigue contractile properties of three different rat muscles (Tibialis Anterior, Extensor Digitorium Longus and Soleus) subjected to sustained maximal isometric contraction were determined. Experiments were conducted on three groups \((n=5)\) of male Wistar rats \((313 \pm 81.14\,\hbox {g})\) using a protocol previously developed by the authors for short tetanic contractions. The muscles were subjected to an electrical stimulus to achieve tetanic contraction during 10 s. The parameters obtained for each muscle were incorporated into a finite strain formulation for simulating active and passive behavior of muscles with different fiber metabolisms. The results show the potential of the model to predict muscle fatigue under high-frequency stimulation and the 3D distribution of mechanical variables such as stresses and strains.  相似文献   

11.
The ability to treat scoliosis via surface stimulated trunk muscle contractions is now being evaluated at several treatment centers. In order to make biomechanical analysis of the procedure, so that the technique can be used optimally, data are needed to quantify the muscle contractions and structural changes by different electrode locations. This paper presents the use of a modified shadow moiré technique to quantify geometric changes resulting from electrical stimulation applied to the surface of the back in a healthy subject.  相似文献   

12.
IntroductionIn a previous paper, standard surface electromyographic (EMG) indices of muscle fatigue, which are based on the lowering of the median or mean frequencies of the EMG power spectrum in time, were applied during an intermittent absolute endurance test and were evaluated relative to criterion validity and test–retest reliability. The aims of this study were to assess mechanical and alternative EMG correlates of muscle fatigue.MethodsHealthy subjects (44 males and 29 females; age: 20–55 yrs) performed three maximal voluntary contractions (MVC) and an endurance test while standing in a static dynamometer. Surface EMG signals were collected from four pairs of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). The test, assessing absolute endurance (90 N m torque), consisted of performing an intermittent extension task to exhaustion. Strength was defined as the peak MVC whereas our endurance criterion was defined as the time to reach exhaustion (Tend) during the endurance test. Mechanical indices quantifying physiological tremor and steadiness were computed from the dynamometer signals (L5/S1 extension moments) along with EMG indices presumably sensitive to variable load sharing between back muscle synergists during the endurance test.ResultsMechanical indices were significantly correlated to Tend (r range: −0.47 to –0.53) but showed deceiving reliability results. Conversely, the EMG indices were correlated to Tend (r range: −0.43 to –0.63) with some of them particularly correlated to Strength (r =  0.72 to –0.81). In addition, their reliability results were acceptable (intra-class correlation coefficient >0.75; standard error of measurement <10% of the mean) in many cases. Finally, several analyses substantiated their physiological relevance. These findings imply that these new EMG indices could be used to predict absolute endurance as well as strength with the use of a single intermittent and time-limited (5–10 min) absolute endurance test, a practical way to assess the back capacity of chronic low back pain subjects.  相似文献   

13.
Several EMG-based approaches to muscle fatigue assessment have recently been proposed in the literature. In this work, two multivariate fatigue indices developed by the authors: a generalized mapping index (GMI) and the first component of principal component analysis (PCA) were compared to three univariate indices: Dimitrov’s normalized spectral moments (NSM), Gonzalez-Izal’s waveletbased indices (WI), and Talebinejad’s fractal-based Hurst Exponent (HE). Nine healthy participants completed two repetitions of fatigue tests during isometric, cyclic and random fatiguing contractions of the biceps brachii. The fatigue assessments were evaluated in terms of a modified sensitivity to variability ratio yielding the following scores (mean ± std.dev.): PCA: (12.6 ± 5.6), GMI: (11.5 ± 5.4), NSM: (10.3 ± 5.4), WI: (8.9 ± 4.6), HE: (8.0 ± 3.3). It was shown that PCA statistically outperformed WI and HE (p < 0.01) and that GMI outperformed HE (p < 0.02). There was no statistical difference among NSM, WI and HE (p > 0.2). It was found that taking the natural logarithm of NSM and WI, although reducing the parameters’ sensitivity to fatigue, increased SVR scores by reducing variability.  相似文献   

14.
15.
The study compared changes in intramuscular and surface recordings of EMG amplitude with ultrasound measures of muscle architecture of the elbow flexors during a submaximal isometric contraction. Ten subjects performed a fatiguing contraction to task failure at 20% of maximal voluntary contraction force. EMG activity was recorded in biceps brachii, brachialis, and brachioradialis muscles using intramuscular and surface electrodes. The rates of increase in the amplitude of the surface EMG for the long and short heads of biceps brachii and brachioradialis were greater than those for the intramuscular recordings measured at different depths. The amplitude of the intramuscular recordings from three muscles increased at a similar rate (P = 0.13), as did the amplitude of the three surface recordings from two muscles (P = 0.83). The increases in brachialis thickness (27.7 +/- 5.7 to 30.9 +/- 3.5 mm; P < 0.05) and pennation angle (10.9 +/- 3.5 to 16.5 +/- 4.8 degrees ; P = 0.003) were not associated with the increase in intramuscular EMG amplitude (P > 0.58). The increase in brachioradialis thickness (22.8 +/- 4.8 to 25.5 +/- 3.4 mm; P = 0.0075) was associated with the increase in the amplitude for one of two intramuscular EMG signals (P = 0.007, r = 0.79). The time to failure was more strongly associated with the rate of increase in the amplitude of the surface EMG than that for the intramuscular EMG, which suggests that the surface measurement provides a more appropriate measure of the change in muscle activation during a fatiguing contraction.  相似文献   

16.
The purpose of this study was to examine acute exercise-induced changes on muscle power output and surface electromyography (sEMG) parameters (amplitude and spectral indices of muscle fatigue) during a dynamic fatiguing protocol. Fifteen trained subjects performed five sets consisting of 10 leg presses (10RM), with 2 min rest between sets. Surface electromyography was recorded from vastus medialis (VM) and lateralis (VL) and biceps femoris (BF) muscles. A number of EMG-based parameters were compared for estimation accuracy and sensitivity to detect peripheral muscle fatigue. These were: Mean Average Voltage, median spectral frequency, Dimitrov spectral index of muscle fatigue (FInsm5), as well as other parameters obtained from a time–frequency analysis (Choi–Williams distributions) such as mean and variance of the instantaneous frequency and frequency variance. The log FInsm5 as a single parameter predictor accounted for 37% of the performance variance of changes in muscle power and the log FInsm5 and MFM as a two factor combination predictor accounted for 44%. Peripheral impairments assessed by sEMG spectral index FInsm5 may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task.  相似文献   

17.
During a sustained contraction, electromyographic signals (EMGs) undergo a spectral compression. This fatigue behaviour induces a shift of the mean and the median frequencies to lower frequencies. On the other hand, several studies conclude that the mean/median frequency can increase, decrease or remain constant with an increasing force level. Such inconsistency is embarrassing since the fatigue state may be influenced by the force level. In this paper, we propose a frequency indicator which is sensitive to the force level independently of the fatigue state evaluated at 70% of the maximal voluntary contraction. Ten healthy volunteers participated in the study and both surface EMGs (from the short head of the biceps brachii) and force signals were measured. This study compared force and fatigue effects on the EMGs during short (3-s) isometric contractions at different strength intensities and during a sustained isometric contraction until exhaustion. The EMGs partly show 1/falpha spectral behaviours since their power spectral densities may experimentally fit with two linear segments in a log-log representation. The measured "right" slope produces variations of force as 20 times the variations of fatigue. 1/falpha Behaviour may be related to stochastic fractals. This fractal indicator is a new frequency indicator that is thus complementary to other known classical frequency indicators when studying force during unknown fatigue states.  相似文献   

18.
Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 +/- 3.6 yr, mean +/- SD) and 9 men (25.4 +/- 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 +/- 9.2 vs. 42.7 +/- 8.0 N.m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 +/- 3.0 vs. 93.3 +/- 3.6%; P > 0.05) and at the start of the fatiguing task (P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 +/- 3% of initial MVC) than the women (52 +/- 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue (P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 +/- 4.1 vs. 7.3 +/- 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 +/- 5.9 vs. 10.5 +/- 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 +/- 7.4 vs. 90.4 +/- 6.8%, n = 13) and end of the sixth contraction (77.2 +/- 13.3% vs. 73.1 +/- 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.  相似文献   

19.
The mean frequency of the power spectrum of an electromyographic signal is an accepted index for monitoring fatigue in static contractions. There is however, indication that it may be a useful index even in dynamic contractions in which muscle length and/or force may vary. The objective of this investigation was to explore this possibility. An examination of the effects of amplitude modulation on modeled electromyographic signals revealed that changes in variance created in this way do not sufficiently affect characteristic frequency data to obscure a trend with fatigue. This validated the contention that not all non-stationarities in signals necessarily manifest in power spectral parameters. While an investigation of the nature and effects of non-stationarities in real electromyographic signals produced from dynamic contractions indicated that a more complex model is warranted, the results also indicated that averaging associated with estimating spectral parameters with the short-time Fourier transform can control the effects of the more complex non-stationarities. Finally, a fatigue test involving dynamic contractions at a force level under 30% of peak voluntary dynamic range, validated that it was possible to track fatigue in dynamic contractions using a traditional short-time Fourier transform methodology.  相似文献   

20.
This paper discusses the assessment of the electrical manifestations of muscle fatigue during dynamic contractions. In the past, the study of muscle fatigue was restricted to isometric constant force contractions because, in this contraction paradigm, the myoelectric signal may be considered as wide sense stationary over epochs lasting up to two or three seconds, and hence classic spectral estimation techniques may be applied. Recently, the availability of spectral estimation techniques specifically designed for nonstationary signal analysis made it possible to extend the employment of muscle fatigue assessment to cyclic dynamic contractions, thus increasing noticeably its possible clinical applications. After presenting the basics of time-frequency distributions, we introduce instantaneous spectral parameters well suited to tracking spectral changes due to muscle fatigue, discuss the issues of quasi-stationarity and quasi-cyclostationarity, and present different strategies of signal analysis to be utilized with cyclic dynamic contractions. We present preliminary results obtained by analyzing data collected from paraspinal muscles during repetitive lift movements, from the first dorsal interosseus during abduction-adduction movements of the index finger, and from knee flexors and extensors during isokinetic exercise. In conclusion, data herein reported demonstrate that the described techniques allow for evidencing the electrical manifestations of muscle fatigue in different paradigms of cyclic dynamic contractions. We believe that the extension of the objective assessment of the electrical manifestations of muscle fatigue from static to dynamic contractions may increase considerably the interest of researchers and clinicians and open new application fields, as ergonomics and sports medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号