首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1973 tobacco mosaic virus (TMV) strain M II-16 was successfully used by growers in the United Kingdom to protect commercial tomato crops against the severe effects of naturally occurring strains of TMV. However, plants in many crops had mosaic leaf symptoms which were occasionally severe, so possible reasons for symptom appearance were examined. The concentration of the mutant strain in commercially produced inocula (assessed by infectivity and spectrophotometry) ranged from 28 to 1220 μg virus/ml; nevertheless all samples contained sufficient virus to infect a high percentage of inoculated tomato seedlings. Increasing the distance between the plants and the spray gun used for inoculation from 5 to 15 cm resulted in a significant decrease in the number of tomato seedlings infected. When M II-16 infected tomato plants were subsequently inoculated with each of fifty-three different isolates of TMV, none showed severe symptoms of the challenging isolates within 4 wk, although some isolates of strain o induced atypically mild leaf symptoms. In a further experiment, M II-16 infected plants showed conspicuous leaf symptoms only 7 wk after inoculation with a virulent TMV isolate. M II-16 multiplied more slowly in tomato plants and had a lower specific infectivity than a naturally occurring strain of TMV. More than 50% of plants in crops inoculated with strain M II-16 which subsequently showed conspicuous leaf mosaic contained TMV strain 1 or a form intermediate between strains o and 1. It is suggested that the production of TMV symptoms in commercial crops previously inoculated with strain M II-16 may result from an initially low level of infection, due to inefficient inoculation, which allows subsequent infection of unprotected plants by virulent strains. Incomplete protection by strain M II-16 against all naturally occurring strains may also be an important factor.  相似文献   

2.
Metal phytoextraction assisted by bacteria plays an important role in bioremediation systems. In this work, mercury-resistant bacterial strains were isolated from soils with high levels of mercury (San Joaquin, Queretaro State, Mexico) and identified as Bacillus sp. based on the 16S rDNA gene sequence analysis. The bacterial strains were found to exhibit different multiple mercury-resistance and carbon source utilization characteristics. The mercury reduction ability was tested through a volatilization assay. The bacterial isolates were also evaluated for their ability to promote growth and mercury uptake in tomato plants. In a roll towel assay, the maximum vigor index of tomato plants was obtained with the inoculation of Bacillus sp. A2, A12, B11, B15 and C1, while in a pot assay, the maximum vigor index was obtained with the inoculation of Bacillus sp. A6, A7 and B20, compared with un-inoculated controls in the presence of HgCl2. Maximum Hg accumulation in the roots and shoots of tomato plants was obtained only with Bacillus sp. A7 in the roll towel assay, whereas in the pot assay, maximum accumulation was obtained with Bacillus sp. A12 compared with un-inoculated controls. Our results show that mercury accumulation in tissue is enhanced by these plant growth promoting bacterial strains, which recommends their possible use as microbe-assisted phytoremediation systems in mercury-polluted soils.  相似文献   

3.
Isolates of Botrytis cinerea were obtained from tomatoes in several localities in the West Scotland. Some isolates grew on agar containing 100 mg/1 benomyl (carbendazim-tolerant), while others did not (carbendazim-sensitive). Pot-grown tomato plants treated with benomyl and other carbendazim-generating fungicides, applied either as sprays or soil drenches, were inoculated on the leaf scars with some of these isolates. On treated plants the carbendazim-tolerant isolates formed lesions which were about as large as those on untreated plants. Sensitive isolates formed much smaller lesions on treated plants. There was evidence that the increase in lesion size during the period 7–14 days after inoculation with a carbendazim-sensitive isolate was less on plants sprayed with benomyl or carbendazim with added mineral oil (2% Actipron) than on plants to which the fungicides alone had been applied. No such effect was recorded with thio-phanate-methyl. There was also an indication that the addition of Actipron to a benomyl spray improved the effect of the fungicide against two tolerant isolates, though there was no effect on the relative increase in lesion size during the second week after inoculation. In two tests the addition of 2% and 4% Actipron to benomyl soil drenches did not improve the level of leaf scar lesion control.  相似文献   

4.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

5.
A New South Wales isolate (Ca) of capsicum mosaic virus was tested against antisera to it and capsicum tobamovirus isolates from the Netherlands (P8, P11), USA (SL), Argentina (FO) and Sicily (PM). The comparison demonstrated that the four viruses Ca, P8, PM and SL are closely related to each other, forming a series of decreasing relationship to Ca in the above order. FO was related to these but insufficiently to be considered part of the group, and P11 was only slightly related to the others. The literature on serology of tobamoviruses in Capsicum spp. was collated and it is suggested that isolates from Sicily (pepper mild mottle), Australia (capsicum mosaic), The Netherlands (P8, P14) and USA (SL) be considered as strains of a virus distinct from both tobacco mosaic and tomato mosaic viruses and that these isolates all be referred to in future as strains of pepper mild mottle virus.  相似文献   

6.
Tomato plants pre-inoculated with the avirulent strain NCPPB 3123 of Clavibacter michiganensis subsp. michiganensis (Cmm) were protected largely against challenge infection by virulent strains of Cmm. Effectiveness of this protective effect was mainly dependent on the inoculation sites, the bacterial cell concentration used for pre- and challenge inoculations, and the time interval between both inoculations. This defence reaction was systemic and stable throughout the whole growing season. Resistance can also be induced by pre-inoculation of heat-killed bacteria or application of isolated EPS of the strain 3123. Strain 3123 spreads out in tomato plants in the same manner as virulent Cmm isolates, but its colonization of tomato fruits and seeds was substantially lower. Papillary to spherical electron dense particles were observed at the tonoplast in parenchyma cells of the vascular system of tomato plants inoculated with the strain 3123. Numerous investigations carried out to examine the ability of 3123 to induce resistance in other host/pathogen-systems showed that it was only specific for tomato/Cmm.  相似文献   

7.
Transgenic tobacco plants expressing the coat protein (CP) gene of tobacco mosaic virus were tested for resistance against infection by five other tobamoviruses sharing 45-82% homology in CP amino acid sequence with the CP of tobacco mosaic virus. The transgenic plants (CP+) showed significant delays in systemic disease development after inoculation with tomato mosaic virus or tobacco mild green mosaic virus compared to the control (CP-) plants, but showed no resistance against infection by ribgrass mosaic virus. On a transgenic local lesion host, the CP+ plants showed greatly reduced numbers of necrotic lesions compared to the CP- plants after inoculation with tomato mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, and Odontoglossum ringspot virus but not ribgrass mosaic virus. The implications of these results are discussed in relation to the possible mechanism(s) of CP-mediated protection.  相似文献   

8.
Rhizobacteria isolated from the rhizoplane of grasses growing at the Nylsvlei Nature Reserve in South Africa were investigated for growth promotion and root colonization in wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) under greenhouse and microplot field conditions. The identities of the isolates were determined by means of 16S rRNA gene sequencing as Bacillus simplex (KBS1F-3), Bacillus megaterium (NAS7-L), Bacillus cereus (KFP9-F) and Paenibacillus alvei (NAS6G-6). The three Bacillus strains were isolated from the perennial grass Themeda triandra while the Paenibacillus strain was isolated from another perennial grass Sporobolus fimbriatus. Enhanced plant shoot and root weight in wheat was achieved by single inoculation with three of the isolates whereas no significant increase was observed in root length. Combined inoculation of Paenibacillus alvei (NAS6G-6) and Bacillus cereus (KFP9-F) on wheat resulted in significant increase in these parameters. Single inoculations of Bacillus simplex (KBS1F-3) and Bacillus cereus (KFP9-F) resulted in significant increase in root and shoots fresh weight, root dry weight and total root length in tomatoes. Indoleacetic acid production, phosphate solubilization and siderophore secretion were studied as possible mechanisms by which the bacterial isolates enhanced plant growth. Root colonization was studied by means of spontaneous rifampicin resistant strains of the wild type isolates. Except for B. megaterium (NAS7-L), the rest of the isolates colonized the roots efficiently resulting in concentrations of 106–108 cfu g−1 root. The root colonization of Bacillus simplex (KBS1F-3) and Paenibacillus alvei (NAS6G-6) was visualized by confocal scanning laser microscope (CSLM) after successful transformation of the isolates with the pNF8 plasmid carrying the gene for the green fluorescent protein (gfp).  相似文献   

9.
Tomato big bud was detected for the first time in tomato plants (Lycopersicon esculentum Mill.) in the eastern region (Al‐Mafraq) of Jordan. Infected plants showed proliferation of lateral shoots, hypertrophic calyxes and greening of flower petals. The presence of phytoplasmas in diseased tomato plants was demonstrated using polymerase chain reaction (PCR) assays. The amplified DNAs yielded products of 1.8 kb (primer pair P1/P7) and 1.2 kb (primer pair R16F2/R2) by direct and nested‐PCR, respectively. DNA from tomato isolates T1 and T2 could not be amplified in the nested‐PCR assays when the aster yellow‐specific primer pair R16(1)F1/R1 was used, suggesting that the phytoplasma in these isolates is not genetically related to the 16SrI (aster yellows) group. After restriction fragment length polymorphism (RFLP) analyses, using four endonuclease enzymes (HhaI, RsaI, AluI and Bsp143I) similar patterns were formed among the digested 1.2 kb PCR products of two tomato isolates suggesting that both isolates belonged to the same phytoplasma. Compared with the RFLP profile of the reference strains, no difference in the digestion pattern was found between the tomato isolates and that of the catharanthus phyllody agent from Sudan, indicating that the phytoplasma belongs to 16SrDNA VI (clover proliferation) group.  相似文献   

10.
Cucumber mosaic virus (CMV) lists among the most important etiological agents of tomato diseases. Some isolates of CMV function as helper virus for replication, encapsidation and transmission of satellite RNAs (satRNA), which may exacerbate symptoms induced by CMV in certain hosts. Outbreaks of CMV strains supporting hypervirulent variants of satRNAs are recurrent in tomato with devastating effects on crop production and efficient control measures are still unavailable. In this study, we examined the dynamics of infection of the CMV strains tomato top stunting (TTS) and 77 supporting replication of satRNA variants that codetermine top stunting (TTS‐satRNA) and necrotic (77‐satRNA) phenotypes in two tomato cultivars denoted Solanum lycopersicum Manduria (Sl‐Ma) and S. lycopersicum UC82 (Sl‐UC). Sl‐Ma but not Sl‐UC recovered from disease symptoms induced by CMV‐TTS while both the cultivars succumbed to the infection of CMV‐77 and its necrogenic satRNA. Ability to recover of the Sl‐Ma plants was transmitted by grafting to the susceptible genotype Sl‐UC. More interestingly, recovery was observed also against the challenge inoculation of CMV plus 77‐satRNA in plants grafted on Sl‐Ma and in self‐grafted plants of both the Sl‐Ma and Sl‐UC cultivars. Analysis of small RNAs and genes of the defence plant response based on RNA interference (RNAi) suggested that RNAi is involved in the recovery of Sl‐Ma against CMV with hypervirulent satRNAs and in scions grafted on this rootstock. The response of Sl‐Ma to the inoculation of CMV‐77 plus 77‐satRNA was compared with that of the transgenic tomato line S. lycopersicum transgenic line UCTC5.9.2 that expresses constitutively the benign variant of the satRNA denoted Tfn‐satRNA. Comparative analysis suggested that the response may operate via similar mechanisms, which involve RNAi, the graft and the presence of the satRNA.  相似文献   

11.
In 2009–2010, crown tumours were collected from walnut (Juglans regia L.) trees in northern Iran. Gram-negative, rod shaped and aerobic bacteria with circular, convex and white-coloured colonies on potato dextrose agar plus CaCO3 medium were isolated from galls. In pathogenicity tests, tomato seedlings were inoculated with all strains and tumours started to appear three weeks after inoculation. Strains yielded a 224?bp amplicon from the virD2 gene in PCR. When the 16S rRNA gene sequence of strains was compared by BLASTn with nucleotide sequences from GenBank, it showed 99.6% identity with the 16S rRNA sequence of Agrobacterium tumefaciens ATCC 33970. Based on phenotypic and genotypic properties, the bacterium that causes crown gall of walnut trees was identified as A. tumefaciens.  相似文献   

12.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

13.
A field survey was conducted to determine the relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato plants grown in plastic greenhouses. Both vegetative and reproductive stages of the plants were surveyed, and the symptoms were empirically categorized into five scales: 0 (asymptomatic): 1st, 2nd, 3rd and 4th. The bacterial wilt pathogen was isolated from infected plants at each disease scale; pathogenic characteristics and population densities of the bacterial strains were assessed. Two hundred and eighty‐two isolates were identified as R. solanacearum, which were divided into three pathogenic types, virulent, avirulent and interim, using the attenuation index (AI) method and a plant inoculation bioassay. Ralstonia solanacearum was detected in all asymptomatic and symptomatic tomato plants, with population numbers, ranging from 10.5 to 86.7 × 105 cfu/g. However, asymptomatic plants harboured only avirulent or interim R. solanacearum, whereas tomato plants displaying 1st or 2nd disease degree contained interim and virulent strains. Additionally, 3rd and 4th degree plants harboured only virulent strains. The disease was more severe in vegetative‐stage plants (disease severity index (DSI) 0.20) with higher total numbers of interim and virulent R. solanacearum strains than those in reproductive‐stage plants (DSI 0.12). Three pathotypes of R. solanacearum coexisted in a competitive growth system in the tomato field, and their distribution closely correlated with the severity of tomato bacterial wilt.  相似文献   

14.
Eighteen isolates of Botrytis cinerea were obtained from the diseased plant tissue collected in Hefei, Bengbu, Changfeng and Hexian in Anhui province, by means of tissue isolating method. The pathogenicity of the isolates of B. cinerea from different hosts to the fruits and leaves of tomato were investigated by applying wound inoculation with mycelial blocks. The results showed that all of the tested isolates caused grey mould on tomato fruits, but there was significant difference in the average diameters of the lesions caused by different isolates, suggesting that there was significant differentiation in pathogenicity of B. cinerea strains to tomato fruits among isolates. According to the average diameters of the lesions on tomato fruits, the pathogenicity of the all isolates was classified into three categories: strong, intermediate and weak. In general, the isolates from tomato were more strongly pathogenic to tomato fruits than the isolates from strawberry, grape and capsicum. However, there was difference in pathogenicity among the different isolates from the same host, and the pathogenicity difference was not obviously related to the localities of isolates. After inoculating of tomato leaves, all of the tested isolates except CF3 caused grey mould on tomato leaves, but there was significant difference in the average diameters of the lesions caused by different isolates; and the difference in pathogenicity to tomato leaves was not obviously related to the host and locality of isolates.  相似文献   

15.
Transgenic tomato plants carrying a truncated replication associated protein (T‐Rep) gene of the mild strain of Tomato yellow leaf curl virus‐Israel (TYLCV‐Is [Mild]) were prepared. The transgene encoding the first 129 amino acids of Rep conferred resistance only against the virus strain from which it was derived, while these plants were susceptible to the severe strain of TYLCV‐Is. This strain‐specific effect may be the result of high sequence divergence within the N‐terminal domains of the Rep genes of the two virus isolates which share a mere 78% sequence identity at the nucleotide level and 77% at the amino acid level. Although the transgenic tomato plants were totally resistant to whitefly inoculation with the mild strain of TYLCV‐Is, agroinoculation with the same virus strain resulted in variable resistance responses in the tested plants: while 21% of plants were totally immune to the virus, 33% were susceptible and 46% expressed a wide range of intermediate resistance characteristics. The applicability of TYLCV‐Is derived resistance in tomato is discussed.  相似文献   

16.
不同寄主来源的灰葡萄孢对番茄的致病力分化研究   总被引:4,自引:0,他引:4  
从安徽合肥、蚌埠、长丰、和县等市、县的番茄、辣椒、草莓、葡萄等发病寄主上分离鉴定获得18个灰葡萄孢Botrytis cinerea菌株,采用菌丝块创伤接种法,分别测定了上述不同寄主来源的灰葡萄孢菌对番茄果实和叶片的致病力.结果表明,所有供试菌株接种番茄果实后均引起发病,但不同菌株所致病斑的平均直径有显著差异,显示灰葡萄孢菌株间对番茄果实的致病力存在明显分化.按照在番茄果实上所致病斑的平均直径大小可将供试菌株致病力划分为较强、中等和较弱3种类型.总体来说,来自番茄的菌株对番茄果实的致病力较强,来自草莓、葡萄和辣椒的菌株对番茄果实的致病力较弱,但来自相同寄主的菌株间致病力也存在差异,菌株致病力差异与菌株地域来源无明显相关.供试灰葡萄孢菌株接种番茄叶片后,除CF1外,均可引起番茄叶片发病,但不同菌株所致番茄叶片病斑的平均直径也有显著差异;供试菌株对番茄叶片的致病力差异与菌株的寄主和地域来源无显著相关.  相似文献   

17.
The survival and colonization patterns of Pseudomonas putida PRD16 and Enterobacter cowanii PRF116 in the rhizosphere of greenhouse-grown tomato plants and the effects of their inoculation on the indigenous bacterial community were followed by selective plating, molecular fingerprinting, and confocal laser scanning microscopy (CLSM) over 3 weeks. Both strains, which showed in vitro antagonistic activity against Ralstonia solanacearum, were previously tagged with gfp. Seed and root inoculation were compared. Although plate counts decreased for both gfp-tagged antagonists, PRD16 showed a better survival in the rhizosphere of tomato roots independent of the inoculation method. Analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and CLSM confirmed the decrease in the relative abundance of the inoculant strains. Pronounced differences in the Pseudomonas community patterns for plants inoculated with PRD16 compared to the control were detected 3 weeks after root inoculation, indicating a longer-lasting effect. Analysis by CLSM showed rather heterogeneous colonization patterns for both inoculant strains. In comparison with seed inoculation, root inoculation led to a much better colonization as evidenced by all three methods. The colonization patterns observed by CLSM provide important information on the sampling strategy required for monitoring inoculant strains in the rhizosphere.  相似文献   

18.
Potato mop-top virus (PMTV) was detected by ELISA in primary zoospores from four out of six isolates of Spongospora subterranea f.sp. subterranea. One virus-free isolate (N) of S. subterranea was used to acquire PMTV from potato roots and to transmit the virus to healthy plants. A mono-fungal culture of S. subterranea (isolate N) was derived by infecting tomato plant roots with a single cystosorus. The culture was used successfully to acquire PMTV from the roots of infected Nicotiana debneyi plants that had been manually inoculated with virus isolates, and subsequently to transmit the virus to healthy bait plants. These experiments confirm that S. subterranea is a vector of PMTV. Two PMTV isolates that had been maintained by manual inoculation for 19 and 21 passages were also acquired and transmitted by the fungus culture.  相似文献   

19.
Tomato (Lycopersicon esculentum) is important widely grown vegetable in India and its productivity is affected by bacterial wilt disease infection caused by Ralstonia solanacearum. To prevent this disease infection a study was conducted to isolate and screen effective plant growth promoting rhizobacteria (PGPR) antagonistic to R. solanacearum. A total 297 antagonistic bacteria were isolated through dual culture inoculation technique, out of which forty-two antagonistic bacteria were found positive for phlD gene by PCR amplification using two primer sets Phl2a:Phl2b and B2BF:BPR4. The genetic diversity of phlD + bacteria was studied by amplified 16S rDNA restriction analysis and demonstrated eleven groups at 65% similarity level. Out of these 42 phlD + antagonistic isolates, twenty exhibited significantly fair plant growth promoting activities like phosphate solubilization (0.92–5.33%), 25 produced indole acetic acid (1.63–7.78 μg ml−1) and few strains show production of antifungal metabolites (HCN and siderophore). The screening of PGPR (phlD +) for suppression of bacterial wilt disease in glass house conditions was showed ten isolated phlD + bacteria were able to suppress infection of bacterial wilt disease in tomato plant (var. Arka vikas) in the presence R. solanacearum. The PGPR (phlD +) isolates s188, s215 and s288 was observed to be effective plant growth promoter as it shows highest dry weight per plant (3.86, 3.85 and 3.69 g plant−1 respectively). The complete absence of wilt disease symptoms in tomato crop plants was observed by these treatments compared to negative control. Therefore inoculation of tomato plant with phlD + isolate s188 and other similar biocontrol agents may prove to be a positive strategy for checking wilt disease and thus improving plant vigor.  相似文献   

20.
Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and β-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and β-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号