首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Objectives

Intramuscular fat (IMF) has a significant influence on porcine meat quality. Ubiquitin D (UBD) is involved in the management of diverse intracellular processes. However, its physiological functions in adipose cell differentiation and proliferation are still poorly defined.

Materials and methods

Intramuscular and subcutaneous preadipocytes were isolated from the longissimus dorsi and neck subcutaneous deposits of Chinese native Guanzhong Black piglets (3‐5 days old), respectively. Lentivirus with short hairpin RNA (shRNA) for UBD was applied to knockdown UBD expression. We used real‐time PCR and Western blot analysis to detect gene expression. Lipid droplets were dyed with Oil Red O, and cell proliferation was assessed using flow cytometry, 5‐ethynyl‐2′‐deoxyuridine incorporation and cell counting assays.

Results

Lipogenesis through the Akt/mTOR pathway was inhibited when preadipocytes were transfected with UBD shRNA. The expression of adipogenic genes and the number of lipid droplets were obviously diminished. Moreover, repression of UBD attenuated cell proliferation. UBD downregulation resulted in cell cycle arrest because of a decreased proportion of S‐phase cells, and the expression of positive cell proliferation markers was significantly decreased.

Conclusion

These observations illustrated that knockdown of UBD partially suppressed porcine intramuscular and subcutaneous preadipocyte adipogenesis through the Akt/mTOR signalling and inhibited cell proliferation, suggesting the essential role of UBD in the differentiation of preadipocytes.
  相似文献   

3.
4.
任岚  肖茹丹  张倩  娄晓敏  张昭军  方向东 《遗传》2018,40(11):998-1006
Krüppel样因子(Krüppel-like factors,KLFs)是锌指蛋白超家族的一个亚家族,参与细胞内的多种生理、病理过程,该家族成员在红细胞分化发育过程中发挥非常重要的作用,但是家族成员间对红系分化的协同调控作用还鲜有报道。本课题组前期研究发现,KIF家族成员KLF1KLF9在已分化的红系细胞中的表达水平显著高于造血干细胞。为进一步探讨二者在红系分化中是否存在协同作用,本研究在K562细胞中分别过表达/敲低表达KLF1KLF9,检测二者表达的相关性,发现KLF1KLF9的基因表达呈现正相关,且二者共表达可以显著促进K562细胞红系分化,特异地增强β-珠蛋白的表达。通过对KLF1KLF9单独和共同过表达、敲低表达的K562细胞转录组数据的分析发现二者可能通过PI3K-Akt和FoxO通路协同调控红系分化,FOS、TF、IL8是协同调控的候选靶基因。本研究结果为后续深入研究KLF1KLF9协同调控红系分化的分子机制奠定了基础。  相似文献   

5.
6.
本研究旨在明确miR-23b-3p对山羊肌内前体脂肪细胞分化的影响,并确定这种作用是通过靶向基因PDE4B来实现的。基于实验室前期转录组测序结果,以筛选得到的山羊肌内脂肪细胞分化前后差异表达的miR-23b-3p为切入点,利用实时荧光定量PCR (real-time quantitative-polymerase chain reaction, qPCR)技术检测miR-23b-3p在山羊肌内前体脂肪细胞分化过程中的表达模式,从形态学水平和分子水平确定miR-23b-3p对脂肪分化及脂肪分化标志基因的影响;利用生物信息学预测以及双荧光素酶报告基因试验确定miR-23b-3p的下游靶基因,明确miR-23b-3p与预测靶标基因的靶向关系。结果表明,过表达miR-23b-3p后山羊肌内脂肪细胞脂滴积聚减少,成脂标志基因AP2、C/EBPαFASNLPL表达水平极显著下调(P<0.01),C/EBPβDGAT2、GLUT4和PPARγ的表达水平显著下调(P<0.05)。干扰miR-23b-3p表达后,山羊肌内脂肪细胞中脂滴积聚增多,ACCATGLAP2、DGAT2、GLUT4、FASNSREBP1表达水平极显著上调(P<0.01),C/EBPβLPLPPARγ的表达水平显著上调(P<0.05)。通过生物信息学分析预测,PDE4B可能为miR-23b-3p的靶标基因,且过表达miR-23b-3p后极显著降低PDE4B的mRNA表达水平(P<0.01),干扰miR-23b-3p后PDE4B的mRNA水平得到了显著提升(P<0.05)。双荧光素酶报告基因试验结果表明,miR-23b-3p与PDE4B基因存在靶向关系。miR-23b-3p通过靶向PDE4B基因调控山羊肌内前体脂肪细胞的分化。  相似文献   

7.
Given the substantial rise in obesity, depot-specific fat accumulation and its associated diseases like diabetes, it is important to understand the molecular basis of depot-specific adipocyte differentiation. Many studies have successfully exploited the adipocyte differentiation, but most of them were not related to depot-specificity, particularly using freshly isolated primary preadipocytes. Using 2-dimensional polyacrylamide gel electrophoresis coupled with sequencing mass spectrometry, we searched and compared the proteins differentially expressed in undifferentiated and differentiated preadipocytes from bovine omental, subcutaneous and intramuscular adipose depots. Our proteome mapping strategy to identify differentially expressed intracellular proteins during adipogenic conversion revealed 65 different proteins that were found to be common for the three depots. Further, we validated the differential expression for a subset of proteins by immunoblotting analyses. The results demonstrated that many structural proteins were down-regulated during differentiation of preadipocytes from all the depots. Most up-regulated proteins like Ubiquinol–cytochrome-c reductase complex core protein I (UQCRC1), ATP synthase D chain, Superoxide dismutase (SOD), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Sulfotransferase 1A1 (SULT1A1), Carnitine O-palmitoyltransferase 2 (CPT2) and Heat-shock protein beta 1 (HSPB1) across the three depots were found to be associated with lipid metabolism and metabolic activity. Further, all the up-regulated proteins were found to have higher protein expression in omental than subcutaneous or intramuscular depots.  相似文献   

8.
Summary A unique population of human bone marrow-derived, adherent fibroblastlike cells differentiates to adipocyte morphology when grown in vitro in the presence of horse serum and hydrocortisone sodium hemisuccinate. Over the initial 8-weeks growth at 37°C, 7% CO2, these cells accumulate Oil Red O-positive lipid and form colonies of over 100 cells, which persist in confluent cultures for over 30 weeks. Similar to cultures derived from mouse marrow, corticosteroid-induced adipocyte differentiation is associated with long-term granulopoiesis. Human marrow preadipocytes, as well as human, mouse and rat embryo fibroblast cell lines, failed to differentiate to adipocyte morphology in the presence of insulin. In contrast, the 3T3-L1 insulin-dependent preadipocyte cell line was not induced to differentiate in the presence of hydrocortisone. These studies demonstrate that human marrow preadipocytes are dependent upon corticosteroid for differentiation in vitro. Supported by National Cancer Institute Virus Cancer Program Contract NCI NO1-7-1051.  相似文献   

9.
10.
目的:构建上皮锌指蛋白4(Krüppel-like factor 4,KLF4)siRNA慢病毒载体并进行初步鉴定,为研究KLF4在宫颈细胞癌中的分子机制奠定基础。方法:利用公用网站中提供的RNA干扰序列设计原则,设计4个RNA干扰靶点序列,合成含干扰序列的单链DNA oligo,然后退火配对产生双链,再通过其两端所含酶切位点直接连入酶切后的RNAi慢病毒载体上;将连接产物转入制备好的细菌感受态细胞,PCR鉴定阳性重组子后,送测序验证,测序结果经比对确认正确的克隆,制备编码慢病毒颗粒的重组病毒质粒及其两种辅助包装原件载体质粒,共转染293T细胞,收集富含慢病毒颗粒上清液,对其浓缩后得到高滴度的慢病毒浓缩液,在293T细胞中测定并标定病毒滴度。收集上清液感染宫颈癌He La细胞,通过q RT-PCR及Western Blot鉴定KLF4 siRNA慢病毒干扰效果。结果:成功构建KLF4 siRNA慢病毒载体。KLF4 siRNA慢病毒感染He La细胞后,q RT-PCR及Western Blot测定结果显示,KLF4表达明显降低。结论:KLF4 siRNA慢病毒载体构建及包装成功,可有效抑制KLF4表达,为研究KLF4生物学功能奠定基础。  相似文献   

11.
12.
The immunogenicity and safety profile of an inactivated whole‐virion influenza A (H5N1, NIBRG‐14) vaccine with alum adjuvant that was administered by IM or SC injection in a phase I clinical study involving 120 healthy Japanese men aged 20–40 years is described. The serological response of the IM group was stronger than that of the SC group. Local adverse events were less severe with IM injection than with SC injection, while similar systemic adverse events were seen in both groups. These results indicate that, when administering an inactivated whole virion vaccine with alum adjuvant for pandemic influenza, IM injection may achieve better immunogenicity and safety than SC injection.  相似文献   

13.
Fat metabolism is an important and complex biochemical reaction in vivo and is regulated by many factors. Recently, the findings on high expression of fibroblast growth factor-16 (FGF16) in brown adipose tissue have led to an interest in exploring its role in lipogenesis and lipid metabolism. The study cloned the goat’s FGF16 gene 624 bp long, including the complete open reading frame that encodes 207 amino acids. We found that FGF16 expression is highest in goat kidneys and hearts, followed by subcutaneous fat and triceps. Moreover, the expression of FGF16 reached its peak on the 2nd day of adipocyte differentiation (P < 0.01) and then decreased significantly. We used overexpression and interference to study the function of FGF16 gene in goat intramuscular preadipocytes. Silencing of FGF16 decreased adipocytes lipid droplet aggregation and triglyceride synthesis. This is in contrast to the situation where FGF16 is overexpressed. Furthermore, knockdown of FGF16 also caused down-regulated expression of genes associated with adipocyte differentiation including CCAAT enhancer-binding protein beta (P < 0.01), fatty acid-binding protein-2 (P < 0.01) and sterol regulatory element binding protein-1 (P < 0.05), but the preadipocyte factor-1 was up-regulated. At the same time, the genes adipose triglyceride lipase (P < 0.01) and hormone-sensitive lipase (P < 0.05) associated with triglyceride breakdown were highly expressed. Next, we locked the fibroblast growth factor receptor-4 (FGFR4) through the protein interaction network and interfering with FGF16 to significantly reduce FGFR4 expression. It was found that the expression profile of FGFR4 in adipocyte differentiation was highly similar to that of FGF16. Overexpression and interference methods confirmed that FGFR4 and FGF16 have the same promoting function in adipocyte differentiation. Finally, using co-transfection technology, pc-FGF16 and siRNA-FGFR4, siRNA2-FGF16 and siRNA-FGFR4 were combined to treat adipocytes separately. It was found that in the case of overexpression of FGF16, cell lipid secretion and triglyceride synthesis showed a trend of first increase and then decrease with increasing interference concentration. In the case of interference with FGF16, lipid secretion and triglyceride synthesis showed a downward trend with the increase of interference concentration. These findings illustrated that FGF16 mediates adipocyte differentiation via receptor FGFR4 expression and contributed to further study of the functional role of FGF16 in goat fat formation.  相似文献   

14.
15.
目的:观察干扰MMP-9和FAK双基因对恶性黑色素瘤高转移细胞B16F10体内转移的影响。方法:构建PGV102-MMP9-siRNA、PGV102-FAK-siRNA重组质粒载体,脂质体TM2000介导转染小鼠黑色素瘤B16F10细胞,RT-PCR检测基因的干扰效果;建立C57BL/6小鼠皮下移植瘤模型观察细胞在体成瘤和肿瘤的生长情况,常规组织切片,H&E染色观察肿瘤组织病理学特征;经C57BL/6小鼠尾静脉注射细胞5×105个/只,24天后计数小鼠肺转移结节数评价肿瘤细胞在体迁移能力。结果:RT-PCR结果表明,重组质粒转染细胞组的MMP-9和FAK的mRNA水平显著低于正常细胞组(P<0.01),转染细胞组C57BL/6小鼠皮下成瘤的肿瘤生长速率、黑色素瘤肺转移结节数明显低于正常细胞组(P<0.01)。结论:干扰B16F10细胞MMP-9和FAK双基因可明显抑制小鼠体内恶性肿瘤的生长和迁移。  相似文献   

16.
Simvastatin serves as an effective therapeutic potential in the treatment of dental disease via alternating proliferation of dental pulp stem cells. First, western-blot and real-time quantitative PCR were used to detect the effect of simvastatin or LY294002 on the expression levels of AKT, miR-9 and KLF5, or determine the effect of miR-9. Simvastatin, KLF5 and AKT significantly enhanced the proliferation of pulp stem cells, whilst this effect induced by simvastatin was suppressed by LY294002, AKT siRNA, KLF5 siRNA and miR-9, and simvastatin dose-dependently upregulated the expression of PI3K. Furthermore, simvastatin upregulated PI3K and p-AKT expression in a concentration-dependent manner. LY294002 abrogated the upregulation of p-AKT expression levels induced by simvastatin, and LY294002 induced the miR-9 expression and simvastatin dose-dependently inhibited the expression of miR-9, by contrast, LY294002 reduced the KLF5 expression and simvastatin dose-dependently promoted the expression of KLF5. And using computational analysis, KLF5 was found to be a candidate target gene of miR-9, and which was further verified using luciferase assay. Finally, the level of KLF5 in cells was much lower following the transfection with miR-9 and KLF5 siRNA, and the level of AKT mRNA in cells was significantly inhibited after transfection with AKT siRNA than control. These findings suggested simvastatin could promote the proliferation of pulp stem cells, possibly by suppressing the expression of miR-9 via activating the PI3K/AKT signalling pathway, and the downregulation of miR-9 upregulated the expression of its target gene, KLF5, which is directly responsible for the enhanced proliferation of pulp stem cells.  相似文献   

17.
18.
19.
miRNAs, a kind of noncoding small RNA, play a significant role in adipose differentiation. In this study, we explored the effect of miR-324-5p in adipose differentiation, and found that miR-324-5p could promote adipocytes differentiation and increase body weight in mice. We overexpressed miR-324-5p during adipocytes differentiation, by oil red O and bodipy staining found that lipid accumulation was increased, and the expression level of adipogenic related genes were significantly increased. And the opposite experimental results were obtained after inhibiting miR-324-5p. In vivo, we injected miR-324-5p agomiR in obese mice and found that body weight, adipocyte area, and adipogenic-related gene expression level were significantly increased but lipolytic genes were decreased. To further explore the mechanism of miR-324-5p regulation in lipid accumulation, we constructed Krueppel-like factor 3 (KLF3) 3′-untranslated region luciferase reporter vector and KLF3 pcDNA 3.1 overexpression vector, and found that miR-324-5p was able to directly target KLF3. Overall, in this study we found that miR-324-5p could promote mice preadipoytes differentiation and increase mice fat accumulation by targeting KLF3.  相似文献   

20.
Sp/KLF family of factors regulates gene expression by binding to the CACCC/GC/GT boxes in the DNA through their highly conserved three zinc finger domains. To investigate the role of this family of factors in erythroid differentiation and globin gene expression, we first measured the expression levels of selected Sp/KLF factors in primary cells of fetal and adult stages of erythroid development. This quantitative analysis revealed that their expression levels vary significantly in cells of either stages of the erythroid development. Significant difference in their expression levels was observed between fetal and adult erythroid cells for some Sp/KLF factors. Functional studies using RNA interference revealed that the silencing of Sp1 and KLF8 resulted in elevated level of gamma globin expression in K562 cells. In addition, K562 cells become visibly red after Sp1 knockdown. Benzidine staining revealed significant hemoglobinization of these cells, indicating erythroid differentiation. Moreover, the expression of PU.1, ETS1 and Notch1 is significantly down-regulated in the cells that underwent erythroid differentiation following Sp1 knockdown. Overexpression of PU.1 or ETS1 efficiently blocked the erythroid differentiation caused by Sp1 knockdown in K562 cells. The expression of c-Kit, however, was significantly up-regulated. These data indicate that Sp1 may play an important role in erythroid differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号