首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

2.
Nien PC  Lee CY  Ho KC  Adav SS  Liu L  Wang A  Ren N  Lee DJ 《Bioresource technology》2011,102(7):4742-4746
A two-chamber microbial fuel cell was started using iron-reducing strains as inoculum and acetate as carbon sources. The tested microbial fuel cell had an open-circuit voltage of 0.67 V, and reached 1045 mA m−2 and a power density of 486 mW m−2 at 0.46 V before power overshoot occurred. Anodic reactions were identified as the rate-determining steps. Stirring the anolyte insignificantly increased cell performance, suggesting a minimal external mass transfer resistance from the anolyte to the anodic biofilm. Data regression analysis indicates that charge transfer resistance at the biofilm-anode junction was negligible. The order of magnitude estimation of electrical conductance indicates that electron transfer resistance had an insignificant effect on microbial fuel cell performance. Resistance in electrogens for substrate utilization is proposed to induce microbial fuel cell power overshoot.  相似文献   

3.
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm?2) or 5.34 ± 0.33 log (gu cm?2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to ~300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.  相似文献   

4.
The utilization of high strength carbon steels in oil and gas transportation systems has recently increased. This work investigates microbiologically influenced corrosion (MIC) of API 5L X80 linepipe steel by sulfate reducing bacteria (SRB). The biofilm and pit morphology that developed with time were characterized with field emission scanning electron microscopy (FESEM). In addition, electrochemical impedance spectroscopy (EIS), polarization resistance (Rp) and open circuit potential (OCP) were used to analyze the corrosion behavior. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and solution interfaces. The results confirmed that the extensive localized corrosion activity of SRB is due to a formed biofilm and a porous iron sulfide layer on the metal surface. Energy Dispersive Spectroscopy (EDS) revealed the presence of different sulfide and oxide constituents in the corrosion products for the system exposed to SRB.  相似文献   

5.
《Process Biochemistry》2014,49(6):973-980
The pseudo-capacitive behaviour of a high surface area carbon veil electrode in a tubular microbial fuel cell (MFC) was investigated as a mechanism to enhance power quality and energy efficiency. Accumulated charge and energy from the anodic biofilm after prolonged open circuit times (1–120 min) were compared against equivalent periods of steady state loading (R = 100–3000 Ω). A significant difference in the amount of accumulated charge with different loads was observed, resulting in 1.051 C (R = 100 Ω) compared to 0.006 C (R = 3 kΩ). The automated application of short open and closed circuit (0.5–10 s) cycles resulted in an increase of power/current production (closed circuit alone), but presented lower efficiency considering entire open and closed period. The cumulative charge on the carbon veil electrode with biofilm was 39,807 C m−2 at 100 Ω. Electrochemical Impedance Spectroscopy (EIS) showed that the Helmholtz layer presented a double layer capacitance of more than ten times the biofilm on electrode. The results indicate that the capacitive behaviour could be utilized to increase the power quality, i.e. its availability/applicability with respect to the operation of low power consuming devices.  相似文献   

6.
Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min?1 salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min?1, 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies.  相似文献   

7.
Electrochemical impedance spectroscopy (EIS) was used to study the behavior of a microbial fuel cell (MFC) during initial biofilm growth in an acetate-fed, two-chamber MFC system with ferricyanide in the cathode. EIS experiments were performed both on the full cell (between cathode and anode) as well as on individual electrodes. The Nyquist plots of the EIS data were fitted with an equivalent electrical circuit to estimate the contributions of various intrinsic resistances to the overall internal MFC impedance. During initial development of the anode biofilm, the anode polarization resistance was found to decrease by over 70% at open circuit and by over 45% at 27 microA/cm(2), and a simultaneous increase in power density by about 120% was observed. The exchange current density for the bio-electrochemical reaction on the anode was estimated to be in the range of 40-60 nA/cm(2) for an immature biofilm after 5 days of closed circuit operation, which increased to around 182 nA/cm(2) after more than 3 weeks of operation and stable performance in an identical parallel system. The polarization resistance of the anode was 30-40 times higher than that of the ferricyanide cathode for the conditions tested, even with an established biofilm. For a two-chamber MFC system with a Nafion 117 membrane and an inter-electrode spacing of 15 cm, the membrane and electrolyte solution dominate the ohmic resistance and contribute to over 95% of the MFC internal impedance. Detailed EIS analyses provide new insights into the dominant kinetic resistance of the anode bio-electrochemical reaction and its influence on the overall power output of the MFC system, even in the high internal resistance system used in this study. These results suggest that new strategies to address this kinetic constraint of the anode bio-electrochemical reactions are needed to complement the reduction of ohmic resistance in modern designs.  相似文献   

8.
The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4 days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6 weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance.  相似文献   

9.
Biofilms of Geobacter sulfurreducens were formed under chronoamperometry at −0.5 V and −0.6 V vs. Ag/AgCl on stainless steel cathodes and tested for fumarate reduction. Increasing the surface roughness Ra from 2.0 μm to 4.0 μm increased currents by a factor of 1.6. The overall current density increased with biofilm coverage. When the current density was calculated with respect to the biofilm-coated area only, values up to 280 A/m2 were derived. These values decreased with biofilm coverage and indicated that isolated cells or small colonies locally provide higher current density than dense colonies. Steel composition affected the current values because of differences in biofilm structure and electron transfer rates. Biofilms formed under polarisation revealed better electrochemical characteristics than biofilm developed at open circuit. This work opens up new guidelines for the design of microbial cathodes: a uniform carpet of isolated bacteria or small colonies should be targeted, avoiding the formation of large colonies.  相似文献   

10.
Enterobacter sakazakii has been reported to form biofilms, but environmental conditions affecting attachment to and biofilm formation on abiotic surfaces have not been described. We did a study to determine the effects of temperature and nutrient availability on attachment and biofilm formation by E. sakazakii on stainless steel and enteral feeding tubes. Five strains grown to stationary phase in tryptic soy broth (TSB), infant formula broth (IFB), or lettuce juice broth (LJB) at 12 and 25°C were examined for the extent to which they attach to these materials. Higher populations attached at 25°C than at 12°C. Stainless steel coupons and enteral feeding tubes were immersed for 24 h at 4°C in phosphate-buffered saline suspensions (7 log CFU/ml) to facilitate the attachment of 5.33 to 5.51 and 5.03 to 5.12 log CFU/cm2, respectively, before they were immersed in TSB, IFB, or LJB, followed by incubation at 12 or 25°C for up to 10 days. Biofilms were not produced at 12°C. The number of cells of test strains increased by 1.42 to 1.67 log CFU/cm2 and 1.16 to 1.31 log CFU/cm2 in biofilms formed on stainless steel and feeding tubes, respectively, immersed in IFB at 25°C; biofilms were not formed on TSB and LJB at 25°C, indicating that nutrient availability plays a major role in processes leading to biofilm formation on the surfaces of these inert materials. These observations emphasize the importance of temperature control in reconstituted infant formula preparation and storage areas in preventing attachment and biofilm formation by E. sakazakii.  相似文献   

11.
Endogenously produced, diffusible redox mediators can act as electron shuttles for bacterial respiration. Accordingly, the mediators also serve a critical role in microbial fuel cells (MFCs), as they assist extracellular electron transfer from the bacteria to the anode serving as the intermediate electron sink. Electrochemical impedance spectroscopy (EIS) may be a valuable tool for evaluating the role of mediators in an operating MFC. EIS offers distinct advantages over some conventional analytical methods for the investigation of MFC systems because EIS can elucidate the electrochemical properties of various charge transfer processes in the bio‐energetic pathway. Preliminary investigations of Shewanella oneidensis DSP10‐based MFCs revealved that even low quantities of extracellular mediators significantly influence the impedance behavior of MFCs. EIS results also suggested that for the model MFC studied, electron transfer from the mediator to the anode may be up to 15 times faster than the electron transfer from bacteria to the mediator. When a simple carbonate membrane separated the anode and cathode chambers, the extracellular mediators were also detected at the cathode, indicating diffusion from the anode under open circuit conditions. The findings demonstrated that EIS can be used as a tool to indicate presence of extracellular redox mediators produced by microorganisms and their participation in extracellular electron shuttling. Biotechnol. Bioeng. 2009; 104: 882–891. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
The influence of various carbon anodes; graphite, sponge, paper, cloth, felt, fiber, foam and reticulated vitreous carbon (RVC); on microbial fuel cell (MFC) performance is reported. The feed was brewery wastewater diluted in domestic wastewater. Biofilms were grown at open circuit or under an external load. Microbial diversity was analysed as a function of current and anode material. The bacterial community formed at open circuit was influenced by the anode material. However at closed circuit its role in determining the bacterial consortia formed was less important than the passage of current. The rate and extent of organic matter removal were similar for all materials: over 95% under closed circuit. The biofilm in MFCs working at open circuit and in the control reactors, increased COD removal by up to a factor of nine compared with that for baseline reactors. The average voltage output was 0.6 V at closed circuit, with an external resistor of 300 kΩ and 0.75 V at open circuit for all materials except RVC. The poor performance of this material might be related to the surface area available and concentration polarizations caused by the morphology of the material and the structure of the biofilm. Peak power varied from 1.3 mW m?2 for RVC to 568 mW m?2 for graphite with biofilm grown at closed circuit.  相似文献   

13.
【目的】研究副溶血性弧菌(Vibrioparahaemolyticus,VP)和霍乱弧菌(Vibriocholera,VC)混合生物被膜的形成过程。【方法】在4、8、12、24、36、48、60、72 h测定单独条件下VP、VC及其混合后生物被膜的形成情况,通过结晶紫染色法、平板菌落计数法、测定胞外多糖、胞外蛋白,通过荧光原位杂交(FISH)观察混合生物被膜形成。【结果】虽然形成的混合生物被膜量介于VC和VP之间,但混合生物被膜在形成过程中,成熟期后生物被膜量的变化较小,对环境的抗性增强。混合生物被膜中拥有更多的活菌,混合生物被膜形成过程中胞外蛋白和胞外多糖的变化体现出其可能在对抵御不适应环境中起重要作用,通过FISH可观察到不同时期生物被膜的变化过程。【结论】VC与VP共同形成生物被膜的过程中,混合生物被膜总量虽然减少,但混合生物被膜中拥有更多的活菌,这可能引起更大的危害。研究混合生物被膜形成过程中被膜的变化,可为有害生物被膜的控制提供基础。  相似文献   

14.
ObjectivesThe aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss.MethodsMandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period.ResultsDuring experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42).SignificanceAntimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.  相似文献   

15.
The Raman spectra, water content, and biomass density of wild-type (WT) Pseudomonas aeruginosa PAO1, small colony variant (SCV) PAO1, and Pseudoalteromonas sp. NCIMB 2021 biofilms were compared in order to determine their variation with strain and species. Living, fully submerged biofilms were analyzed in situ by confocal Raman microspectroscopy for up to 2 weeks. Water to biomass ratios (W/BRs), which are the ratios of the O–H stretching vibration of water at 3,450 cm−1 to the C–H stretching band characteristic of biomass at 2,950 cm−1, were used to estimate the biomass density and cell density by comparison with W/BRs of protein solutions and bacterial suspensions, respectively, on calibration curves. The hydration within SCV biofilm colonies was extremely heterogeneous whereas W/BRs were generally constant in young WT biofilm colonies. The mean biomass in biofilm colonies of WT or colony cores of SCV was typically equivalent to 16% to 27% protein (w/v), but was 10% or less for NCIMB 2021. The corresponding cell densities were 7.5 to >10 × 1010 cfu mL−1 for SCV, while the maximum cell density for NCIMB biofilms was 2.8 × 1010 cfu mL−1.  相似文献   

16.
Protein nanowires are critical electroactive components for electron transfer of Geobacter sulfurreducens biofilm. To determine the applicability of the nanowire proteins in improving bioelectricity production, their genes including pilA, omcZ, omcS and omcT were overexpressed in G. sulfurreducens. The voltage outputs of the constructed strains were higher than that of the control strain with the empty vector (0.470–0.578 vs. 0.355 V) in microbial fuel cells (MFCs). As a result, the power density of the constructed strains (i.e. 1.39–1.58 W m−2) also increased by 2.62- to 2.97-fold as compared to that of the control strain. Overexpression of nanowire proteins also improved biofilm formation on electrodes with increased protein amount and thickness of biofilms. The normalized power outputs of the constructed strains were 0.18–0.20 W g−1 that increased by 74% to 93% from that of the control strain. Bioelectrochemical analyses further revealed that the biofilms and MFCs with the constructed strains had stronger electroactivity and smaller internal resistance, respectively. Collectively, these results demonstrate for the first time that overexpression of nanowire proteins increases the biomass and electroactivity of anode-attached microbial biofilms. Moreover, this study provides a new way for enhancing the electrical outputs of MFCs.  相似文献   

17.
With the goal of discovering new anti-infective agents active against microbial biofilms, this investigation focused on some natural pyrrolomycins, a family of halogenated pyrrole antibiotics. In this study the anti-staphylococcal biofilm activity of pyrrolomycins C, D, F1, F2a, F2b, F3 and of the synthesized related compounds I, II, III were investigated. The susceptibility of six staphylococcal biofilms was determined by methyltiazotetrazolium staining. Most of the compounds were active at concentrations of 1.5 μg ml?1 with significant inhibition percentages. A few of the compounds were active at the lowest screening concentration of 0.045 μg ml?1. The population log reduction of activity against the two best biofilm forming Staphylococcus aureus strains as determined by viable plate counts is also reported. In order to adequately assess the utility of these compounds, their toxicity against human cells was evaluated. It is concluded that pyrrolomycins and synthetic derivatives are promising compounds for developing novel effective chemical countermeasures against staphylococcal biofilms.  相似文献   

18.
Abstract

Food wasted due to food spoilage remains a global challenge to the environmental sustainability and security of food supply. In food manufacturing, post-processing contamination of food can occur due to persistent bacterial biofilms, which can be resistant to conventional cleaning and sanitization. The objective was to characterize the efficacy of a polymeric coating in reducing Pseudomonas aeruginosa biofilm establishment and facilitating its removal. Viable cell density of a 48?h biofilm was reduced by 2.10 log cfu cm?2 on the coated surface, compared to native polypropylene. Confocal laser scanning and electron microscopy indicated reductions in mature biofilm viability and thickness on the coated material. The antifouling coating improved cleanability, with ~2.5 log cfu cm?2 of viable cells remaining after 105?min cleaning by water at 65?°C, compared to 4.5 log cfu cm?2 remaining on native polypropylene. Such coatings may reduce the persistence of biofilms in food processing environments, in support of reducing food spoilage and waste  相似文献   

19.
The electrochemical impedance spectroscopy (EIS) technique has been used as a sensitive method to explore the effect of antibacterial molecules on immobilized bacteria and biofilm formation. In this work, we describe the electrochemical spectroscopy as a powerful method to monitor the effect of Chlorhexidine Digluconate (CHX-Dg) on polyelectrolyte immobilized Escherichia coli K12 MG1655 and the kinetics of cell adhesion on gold electrodes. The experimental impedance data were modelised with a Zview program to find the best equivalent electrical circuit and analyse its parameter's properties. Polyelectrolyte multilayer formation on the electrode surface and bacteria immobilization greatly increased the electron-transfer resistance (Ret) and reduced the constant phase element (CPEdl). The effect of CHX-Dg was studied in a 0.5 × 10−4 mmol l−1 to 0.5 mmol l−1 range. The relation between the evolution of Ret and CHX-Dg concentration was found to be negatively correlated. When CHX-Dg was added, the electrochemical monitoring of the bacterial kinetic adhesion showed that the electrode's capacity (CP) variation remained stable, demonstrating that the addition of CHX-Dg in the broth inhibited bacterial adhesion.  相似文献   

20.
The complexity of the oral environment and ethical issues have prompted the development of an in vitro bacterial model to evaluate the effect of frequency of sucrose exposure on dentin caries formation, biofilm composition, and pH changes. In the experiment, dentin specimens (n=45) were randomly divided into four groups: control (C), negative control (0S), 3S (three sucrose baths), and 6S (six sucrose baths). The specimens then were inoculated with Streptococcus mutans and treated according to the protocol described below. Dentin demineralization and lesion depth were assessed by transverse microradiography. Extracellular polysaccharides that formed in the biofilm were analyzed and counts of microorganisms in the carious dentin were measured. After a 7-day period of growth, the biofilm pH was assessed before and after sucrose baths (n=5). The addition of sucrose led to dentin caries development regardless of the number of sucrose baths performed. The number of colony forming units (cfu) from the carious dentin did not differ among the treatment groups, though the extracellular polysaccharides from both 3S and 6S differed from 0S. The pH decreased immediately after the sucrose bath but increased again after 5 min. We demonstrate here that the in vitro microbial model for the study of dentin caries formation is reproducible and able to produce dentin caries, irrespective of the frequency of sucrose exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号