首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To understand the effect of counter ions (Na+) on the secondary conformation and functionality of the lysozyme, we have studied the interaction of lysozyme with counterion associated iron oxide nanoparticles (IONPs). The investigation was carried out at pH 7.4 and 9.0, with three different types of NPs, namely, bare IONPs, low molecular weight chitosan modified IONPs (LMWC-IONPs) and the counterion (Na+) associated sodium tripolyphosphate IONPs (STP-LMWC-IONPs) and confirmed by using various spectroscopy techniques. The difference in UV–vis absorbance (ΔA) between native and STP-LMWC-IONPs interacted hen egg white lysozyme (HEWL) was greater than that between native and NPs interacted HEWL at pH 9.0 compared with pH 7.4. Furthermore, STP-LMWC-IONPs exhibited quenching effect on lysozyme fluorescence spectrum at pH 9.0 due to binding of Na+ counterions to the protein, confirming denaturation of the latter. After HEWL interaction with STP-LMWC-IONPs (pH 9.0), CD spectra revealed a conformational change in the secondary structure of HEWL. Also, counterion induced lysozyme inactivation, due to interaction with nanoparticles at pH 9.0, was confirmed by enzymatic activity assay involving lysis of Micrococcus lysodeikticus. In conclusion, pH 9.0 was observed to be a more favorable condition, compared to pH 7.4, for the strongest electrostatic interaction between lysozyme and NPs. We postulate that the counterions in nanoparticle surface-coating can ameliorate protein misfolding or unfolding and also prevent their aggregation and, therefore, can be considered as a powerful and potential therapeutic strategy to treat incurable neurodegenerative disorders.  相似文献   

2.
The biosynthesized Ag NPs was synthesized by using marine mangrove plant extract Avicennia marina. The synthesized Ag NPs was confirmed by various physiochemical characterization including UV-spectrometer and XRD analysis. In addition, the shape and of the synthesized Ag NPs was morphologically identified by SEM initially and TEM finally. After confirmation, the anti-cancer property of synthesized Ag NPs was confirmed at 50 µg/mL concentration against A549 lung cancer cells by MTT assay. Further, the ability to stimulate the ROS generation and mitochondrial membrane at the IC50 concentration of Ag NPs was confirmed by fluorescence microscopy using DCFH-DA and rhodamine 123 dyes respectively. Finally, the result was concluded that the synthesized Ag NPs has improved anti-cancer activity against A549 cells at lowest concentration.  相似文献   

3.
BackgroundMultidrug resistance (MDR) is the main reason for chemotherapy failure. Nanocarriers combined delivery of anti-cancer drugs and MDR inhibitors is an effective strategy to avoid MDR and improve the anti-cancer activity of drugs.MethodsTwo paclitaxel (PTX) molecules are linked by disulfide bonds into PTX2. Then, the PTX2 and tetrandrine (TET) are coated together by mPEG-PLGA self-assembled NPs for combinational treatment. Microstructure, physiological stability, and cytotoxicity are characterized for the co-loaded NPs.ResultsThe NPs exhibit excellent suitability and blood safety for intravenous injection, specifically responsive to pH 6–7, and promptly initiate chemical degradation. Ex vivo fluorescence microscopy image studies indicate that co-loaded NPs increase drug penetration into cancer cells compared with free drugs. MTT assay demonstrates that co-loaded NPs have higher cytotoxicity against HeLa and the flow cytometric analysis shows that co-loaded NPs trigger more apoptosis than the free drugs. Reactive oxygen species (ROS) assay indicates that the drug-loaded NPs generated higher levels of ROS to accelerate apoptosis in HeLa cells.ConclusionsTET can get desirable effects of inhibiting the MDR in advance by binding with the active site on P-gp, then the disulfide bond of PTX2 is broken by glutathione (GSH) in cancer cells and decomposed into PTX to inhibit cancer cell proliferation.General significanceOur studies indicate that the co-loaded NPs can potentially overcome the MDR of conventional chemotherapeutic agents.  相似文献   

4.
In the current study, gefitinib loaded PLGA nanoparticles (GFT-PLGA-NPs) and chitosan coated PLGA nanoparticles (GFT-CS-PLGA-NPs) were synthesized to investigate the role of surface charge of NPs for developing drug delivery system for non-small-cell lung cancer (NSCLC). The developed NPs were evaluated for their size, PDI, zeta potential (ZP), drug entrapment, drug loading, DSC, FTIR, XRD, in vitro release profile, and morphology. The anti-cancer activity of GFT loaded PLGA NPs and GFT loaded CS-PLGA-NPs were examined in human A549 lung cancer cell lines. In vitro release studies of GFT-CS-PLGA-NPs showed more sustained release in comparison to GFT-PLGA-NPs due surface charge attraction of chitosan. In addition, viability of A549 cells decreases significantly with the increasing concentration of GFT-PLGA NPs and GFT-CS-PLGA-NPs when compared to that of pure GFT and blank PLGA NPs. In addition, the microscopic analysis and counting of viable cells also validate the cytotoxicity of the developed NPs. This investigation proved that the developed NPs would be efficient carriers to deliver GFT with improved efficacy against NSCLC.  相似文献   

5.
Lactoferrin (Lf), present in colostrum and milk is a member of the transferrin family of iron-binding glyco-proteins, with stronger binding capacity to ferric iron than hemoglobin, myoglobin or transferrin. Unlike hemoglobin and myoglobin, iron-bound Lf is reasonably stable to gastric and duodenal digestive conditions. Unlike ferrous iron, ferric iron is not directly reactive with oxygen supporting the capacity of Lf capture of heme iron to suppress reactive oxygen species (ROS) production. We therefore hypothesized that bovine Lf could capture and thereby terminate the cycle of ROS production by heme iron. The transfer of heme iron from either intact or digested forms of hemoglobin and myoglobin and from intact ferritin was demonstrated by in vitro methods, monitoring Fe-saturation status of Lf by changes in absorptivity at 465 nm. The results are discussed in the context of new proposed opportunities for orally administered Lf to regulate oxidative damage associated with heme iron. In addition to potentially suppressing oxidative heme–iron-mediated tissue damage in the lumen, Lf is expected to also reverse the overload of ferritin-bound iron, that accompanies chronic inflammation and aging. These new proposed uses of Lf are additional to known host defense functions that include anti-microbial, anti-viral properties, immune and cancer cell growth regulation. The findings and interpretations presented require clinical substantiation and may support important additional protective and therapeutic uses for Lf in the future.  相似文献   

6.
Here, we report a simple, eco-friendly and inexpensive approach for the synthesis of zinc oxide nanoparticles (ZnO NPs) using Coptidis Rhizoma. The ZnO NPs were characterized by UV–visible absorption spectroscopy, FTIR, SEM-EDX, TGA, TEM, SAED and XRD. TEM images confirmed the presence of spherical and rod shaped ZnO NPs in the range of 2.90–25.20 nm. Green synthesized ZnO NPS exhibited moderate antibacterial activity against Gram-positive and Gram-negative bacteria and excellent DPPH free radical scavenging activity. Synthesized ZnO NPs had no toxic effects on the RAW 264.7 cell line.  相似文献   

7.
Titanium dioxide nanoparticles are massively produced and widely used in daily life, which has posed potential risk to human health. However, the molecular mechanism of TiO2 nanoparticles (NPs) with different crystal phases is not clear. In this study, the characterization of two crystalline phases of TiO2 NPs is evaluated by transmission electron microscopy and X-ray absorption fine structure spectrum; an interaction of these TiO2 NPs with HaCaT cells is studied in vitro using transmission electron microscopy, chemical precipitation method, and X-ray absorption fine structure spectrometry. The coordination and surface properties indicate that only the anatase–TiO2 NPs allow spontaneous reactive oxygen species (ROS) generation, but rutile–TiO2 NPs do not after dispersion. The interaction between TiO2 NPs and cellular components might also generate ROS for both anatase–TiO2 NPs and rutile–TiO2 NPs. The ROS generation could lead to cellular toxicity if the level of ROS production overwhelms the antioxidant defense of the cell or induces the mitochondrial apoptotic mechanisms. Furthermore, Ti had a direct combination with some protein or DNA after NPs enter the cell, which could also lead to cellular toxicity.  相似文献   

8.
Cinnamaldehyde, the bioactive component of the spice cinnamon, and its derivatives have been shown to possess anti-cancer activity against various cancer cell lines. However, its hydrophobic nature invites attention for efficient drug delivery systems that would enhance the bioavailability of cinnamaldehyde without affecting its bioactivity. Here, we report the synthesis of stable aqueous suspension of cinnamaldehyde tagged Fe3O4 nanoparticles capped with glycine and pluronic polymer (CPGF NPs) for their potential application in drug delivery and hyperthermia in breast cancer. The monodispersed superparamagnetic NPs had an average particulate size of ∼20 nm. TGA data revealed the drug payload of ∼18%. Compared to the free cinnamaldehyde, CPGF NPs reduced the viability of breast cancer cell lines, MCF7 and MDAMB231, at lower doses of cinnamaldehyde suggesting its increased bioavailability and in turn its therapeutic efficacy in the cells. Interestingly, the NPs were non-toxic to the non-cancerous HEK293 and MCF10A cell lines compared to the free cinnamaldehyde. The novelty of CPGF nanoparticulate system was that it could induce cytotoxicity in both ER/PR positive/Her2 negative (MCF7) and ER/PR negative/Her2 negative (MDAMB231) breast cancer cells, the latter being insensitive to most of the chemotherapeutic drugs. The NPs decreased the growth of the breast cancer cells in a dose-dependent manner and altered their migration through reduction in MMP-2 expression. CPGF NPs also decreased the expression of VEGF, an important oncomarker of tumor angiogenesis. They induced apoptosis in breast cancer cells through loss of mitochondrial membrane potential and activation of caspase-3. Interestingly, upon exposure to the radiofrequency waves, the NPs heated up to 41.6°C within 1 min, suggesting their promise as a magnetic hyperthermia agent. All these findings indicate that CPGF NPs prove to be potential nano-chemotherapeutic agents in breast cancer.  相似文献   

9.
In the current investigation, we report the biosynthesis of silver nanoparticles (Ag NPs) employing extract of Alternaria alternata, which is an eco-friendly process for the synthesis of metallic nanoparticles. Ag NPs were synthesised through the reduction of aqueous Ag+ ion using the cell extract of fungus A. alternata in the dark conditions. The synthetic process was relatively fast and Ag NPs were formed within 24 h. UV–visible spectrum of the aqueous medium containing silver ion showed a peak at 435?nm corresponding to the plasmon absorbance of Ag NPs and another peak at 280?nm refers to tyrosine amino acid. The nanoparticles were characterised by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The morphology of nanoparticles is found to be spherical mostly, with ranging size of 27–79?nm; as revealed by SEM. The FTIR spectrum analysis indicated that biomolecules were involved in the synthesis of Ag NPs. The presence of the amino groups is expected to pack differently around the Ag NPs. This in turn will influence the self-assembly of nanoparticles on substrates as well as their stability. The present study demonstrates the possible use of biologically synthesised Ag NPs in the field of agriculture, when A. alternata could be used for simple, nonhazardous and efficient synthesis of Ag NPs.  相似文献   

10.
The current study described the systematic and detailed extracellular synthesis method of silver nanoparticles (AgNPs) using Streptomyces hirsutus strain SNPGA-8 by green synthesis method. The AgNPs were subjected for characterizations using UV–Vis, FTIR, TGA, TEM, EDX, XRD, and zeta-potential analyses. The antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Candida albicans, Alternaria alternata, Candida glabrata and Fusarium oxysporum was determined by the agar well diffusion technique. The cytotoxicity of AgNPs against human lung cancer (A549) was studied by MTT and ROS assays and capping of proteins of AgNPs from SDS-PAGE. In the UV–Vis., absorption peak was found at 418 nm, FTIR analysis revealed the infrared bands of specific functional groups from 3273 cm?1 to 428 cm?1; TEM data confirmed the spherical shape, smallest size of particle as 18.99 nm, while EDX analysis confirmed the elemental composition of AgNPs with 22.24% Ag. The XRD pattern confirmed the nature of AgNPs as crystalline, and zeta potential peak was found at ?24.6 mV indicating the higher stability. The AgNPs exhibited increased antimicrobial activity with increase in dosage volume and considerable MIC and MBC values against microbial pathogens. In the MTT cytotoxicity assay, the IC50 value of 31.41 μg/mL is obtained against A549 cell line, suggesting the potential of AgNPs to inhibit the tumour cells; and ROS assay displayed increased ROS production with increase in treatment time. Based on the results, it is evident that Streptomyces hirsutus strain SNPGA-8 AgNPs are potentially promising to be applied for biomedical uses.  相似文献   

11.
Magnetic targeted drug delivery (MTD), using magnetic gold nanoparticles (Fe3O4@Au NPs) conjugated with an anti-cancer drug is a promise modality for cancer treatment. In this study, Fe3O4@Au NPs were prepared and functionalized with thiol-terminated polyethylene glycol (PEG), then loaded with anti-cancer drug doxorubicin (DOX). The physical properties of the prepared NPs were characterized using different techniques. Transmission electron microscopy (TEM) revealed the mono dispersed nature of Fe3O4@Au NPs with an average size of 20 nm which was confirmed using Dynamic light scattering (DLS) measurements. Zeta potential measurements along with UV–VIS spectroscopy demonstrated surface DOX loading on Fe3O4@Au NPs. Energy Dispersive X-ray Spectroscopy (EDX) assured the existence of both iron and gold elements in the prepared NPs. The paramagnetic properties of the prepared NPs were assessed by vibrating sample magnetometer (VSM). The maximum DOX-loading capacity was 100 μg DOX/mg of Fe3O4@Au NPs. It was found that DOX released more readily at acidic pH. In vitro studies on MCF-7 cell line elucidated that DOX loaded Fe3O4@Au NPs (Fe3O4@Au-PEG-DOX) have more potent therapeutic effect than free DOX. Knowledge gained in this study may open the door to pursue Fe3O4@Au NPs as a viable nanocarriers for different molecules delivery in many diagnostic and therapeutic applications.  相似文献   

12.
In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95?±?4.44?nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26?±?4.48% and 7.09?±?0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein.  相似文献   

13.
Abstract

Objectives

To evaluate the correlation between reactive oxygen species (ROS) production and micronucleus formation induced by a vitamin complex in peripheral blood mononuclear cells from healthy people aged between 40 and 85 years old.

Methods

Peripheral blood mononuclear cells (PBMNCs) were purified utilizing ficoll-hypaque gradient. ROS production by PBMNCs was quantified by luminol-dependent chemiluminescence in the presence or in the absence of the vitamin complex. DNA damage in PBMNC by the vitamin complex was detected by the micronucleus technique. Statistical analyses were made with the Student's ‘t’ test and the Pearson correlation. P < 0.05 was considered significant.

Results

The vitamin complex induced MN formation in PBMNC but did not augment ROS production. There was no correlation between ROS production and MN formation either in the presence or in the absence of the vitamin complex.

Discussion

There was no increase in the ROS production in the presence of the vitamin complex. The vitamin complex induced an augmentation in the MN formation. There was no correlation between ROS production and the induction of MN formation. Since no association could be detected between ROS production and MN formation, additional studies are required in order to investigate the possible mechanism of vitamin-induced MN formation.  相似文献   

14.
In this study, several sulfonamide derivatives, 4-(2-methylacetylamino)benzenesulfonamides were synthesized. Chemical structures of the derivatives were characterized by 1H NMR, 13C NMR, LC–MS–MS, UV–Vis, FTIR, photoluminescence and elemental analysis. Sulfanilamide was reacted with 2-bromopropionyl bromide, in the presence of pyridine, to form bromo-substituted sulfonamide key intermediates, which were subsequently treated with secondary amines to obtain novel sulfonamide derivatives. All the synthesized compounds were evaluated for in vitro antimicrobial activities and cytotoxicity. Increases in ring size, and rings bearing a nitrogen heteroatom led to improvements in antimicrobial activities. As the presence of CA IX and CA XII enzymes have been implicated in some cancerous tumors, the studies presented herein focuses on targeting these enzymes. It was found that the synthesized derivatives had in vitro anti-cancer properties, where compounds (36) were found to be active against all cancerous cells, and no cytotoxic effects on normal cells were observed.  相似文献   

15.
Abstract

With an endeavor to develop novel curcumin analogs as potential anti-cancer agents, we designed and synthesized a series of Knoevenagel condensates by clubbing pyrazole carbaldehydes at the active methylene carbon atom of the curcumin backbone. Molecular docking studies were carried out to target the proposed derivatives on human kinase β (IKKβ), a potential anti-cancer target. The chloro derivative displayed five hydrogen bond interactions with a docking score of ?11.874?kcal/mol higher than curcumin (docking score =??7.434?kcal/mol). This was supported by the fact that the propellant shaped derivatives fitted aptly into the binding pocket. Molecular simulations studies were also conducted on the lead molecule and the results figured out that the stable complexes were developed as the minimal deviations per residue of protein within the range of 0.11–0.92 Å. The screened compounds were synthesized, characterized and evaluated in vitro for cytotoxicity against cervical cancer cell line, HeLa using standard cell proliferation assay. Chloro derivative and bromo analog demonstrated IC50 (half maximal inhibitory concentration) value of 14.2 and 18.6 µg/ml, respectively, significantly lower than 42.4 µg/ml of curcumin and higher than 0.008 µg/ml of paclitaxel. Induction of apoptosis was evaluated in the terms of cleavage of caspase-3 enzyme and they also exhibited 69.6 and 65.4% of apoptosis significantly higher than 19.9% induced by curcumin. In conclusion, chloro and bromo derivatives must be evaluated under a set of stringent in vitro and in vivo parameters for translating in to a clinically viable product.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.  相似文献   

17.

Objective

Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo.

Methods

Anti-PECAM-1 IONPs and IgG IONPs were prepared and characterized in house. The binding affinity of these nanoparticles was investigated using human cortical microvascular endothelial cells (hCMEC/D3). Flux assays were performed using a hCMEC/D3 BBB model. To test their immunospecificity index and biodistribution, nanoparticles were given to Sprague Dawley rats by intra-carotid infusion. The capillary depletion method was used to elucidate their distribution between the BBB and brain parenchyma.

Results

Anti-PECAM-1 IONPs were ∼130 nm. The extent of nanoparticle antibody surface coverage was 63.6±8.4%. Only 6.39±1.22% of labeled antibody dissociated from IONPs in heparin-treated whole blood over 4 h. The binding affinity of PECAM-1 antibody (KD) was 32 nM with a maximal binding (Bmax) of 17×105 antibody molecules/cell. Anti-PECAM-1 IONP flux across a hCMEC/D3 monolayer was significantly higher than IgG IONP''s with 31% of anti-PECAM-1 IONPs in the receiving chamber after 6 h. Anti-PECAM-1 IONPs showed higher concentrations in lung and brain, but not liver or spleen, than IgG IONPs after infusion. The capillary depletion method showed that 17±12% of the anti-PECAM-1 IONPs crossed the BBB into the brain ten minutes after infusion.

Conclusions

PECAM-1 antibody coating significantly increased IONP flux across the hCMEC/D3 monolayer. In vivo results showed that the PECAM-1 antibody enhanced BBB association and brain parenchymal accumulation of IONPs compared to IgG. This research demonstrates the benefit of anti-PECAM-1 IONPs for association and flux across the BBB into the brain in relation to its biodistribution in peripheral organs. The results provide insight into potential application and toxicity concerns of anti-PECAM-1 IONPs in the central nervous system.  相似文献   

18.
Magnetic nanoparticles (NPs) are used to a large extent in the targeted delivery of therapeutic agents. In this study, we aimed to investigate the possible toxicity of Fe2O 3 NPs on human cells, including blood lymphocytes. We isolated blood lymphocytes from healthy humans using Ficoll polysaccharide and subsequently by gradient centrifugation. Then, the toxicity parameters, including cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, cellular glutathione (GSH) level, mitochondrial and lysosomal damage, were measured in blood lymphocytes after exposure to Fe 2O 3 NPs. Our results indicated that Fe 2O 3 NPs significantly (dependent on concentration) reduced the cell viability, and the IC 50 was determined to be 1 mM. With increasing concentrations, we found that Fe 2O 3 NPs–induced cell toxicity was associated with a significant increase in intracellular ROS and loss of mitochondrial membrane potential and lysosomal membrane leakiness. Consequently, these NPs at different concentrations affect GSH level and cause oxidative stress in human lymphocytes.  相似文献   

19.
We evaluated the effect of the antioxidant N-acetyl-l-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post-131I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.  相似文献   

20.
Abstract

Nickel oxide nanoparticles (NiO NPs) have received great interests in medical and biotechnological applications. However, their adverse impacts against biological systems have not been well-explored. Herein, the influence of NiO NPs on structural changes, heme degradation and aggregation of hemoglobin (Hb) was evaluated by UV-visible (Vis) spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and molecular modeling investigations. Also, the morphological changes and expression of Bax/Bcl-2 mRNA in human lymphocyte cell exposed to NiO NPs were assayed by DAPI staining and quantitative real-time PCR (qPCR), respectively. The UV-Vis study depicted that NiO NPs resulted in the displacement of aromatic residues and heme groups and production of the pro-aggregatory species. Intrinsic and Thioflavin T (ThT) fluorescence studies revealed that NiO NPs resulted in heme degradation and amorphous aggregation of Hb, respectively, which the latter result was also confirmed by TEM study. Moreover, far UV-CD study depicted that NiO NPs lead to substantial secondary structural changes of Hb. Furthermore, near UV-CD displayed that NiO NPs cause quaternary conformational changes of Hb as well as heme displacement. Molecular modelling study also approved that NiO NPs resulted in structural alterations of Hb and heme deformation. Moreover, morphological and genotoxicity assays revealed that the DNA fragmentation and expression ratio of Bax/Bcl-2 mRNA increased in lymphocyte cells treated with NiO NPs for 24?hr. In conclusion, this study indicates that NiO NPs may affect the biological media and their applications should be limited.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号