首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human fatty acid synthase (hFASN), a homo dimeric lipogenic enzyme with seven catalytic domains, is an important clinical target in cancer, metabolic syndrome and infections. Here, molecular modelling and docking methods were implemented to examine the inter-molecular interactions of thioesterase (TE) domain in hFASN with its physiological substrate, and to identify potential chemical inhibitors. TE catalyses the hydrolysis of thioester bond between palmitate and the 4’ phosphopantetheine of acyl carrier protein, releasing 16-carbon palmitate. The crystal structure of hFASN TE in two inhibitory conformations (A and B) were geometry-optimized and used for molecular docking with palmitate, orlistat (a known FASN inhibitor) and virtual screening against compounds from National Cancer Institute (NCI) database. Relatively, low binding affinity was observed during the complex formation of palmitate with A (?.164 kcal/mol) and B (?.332 kcal/mol) forms of TE, when compared with orlistat-docked TE (A form: ?5.872 kcal/mol and B form: ?5.484 kcal/mol), clearly indicating that the native inhibited conformation (crystal structure) was unfavourable for substrate binding. We used these orlistat dual binding modes as positive controls for prioritizing the ligands during virtual screening. From 2, 31,617 molecules in the NCI database, 916 high-scoring compounds (hit ligands) were obtained for A-form and 4582 for B-form of the TE-domain, which were then ranked according to glide docking score, XP H bond score, absorption, distribution, metabolism and excretion and binding free energy (Prime/MM-GBSA). Consequently, two top scoring ligands (NSC: 319661 and NSC: 153166) emerged as promising drug candidates that may be tested in FASN-over-expressing diseases.  相似文献   

3.
The lipolytic protein LipU was conserved in mycobacterium sp. including M. tuberculosis (MTB LipU) and M. leprae (MLP LipU). The MTB LipU was identified in extracellular fraction and was reported to be essential for the survival of mycobacterium. Therefore to address the problem of drug resistance in pathogen, LipU was selected as a drug target and the viability of finding out some FDA approved drugs as LipU inhibitors in both the cases was explored. Three-dimensional (3D) model structures of MTB LipU and MLP LipU were generated and stabilized through molecular dynamics (MD). FDA approved drugs were screened against these proteins. The result showed that the top-scoring compounds for MTB LipU were Diosmin, Acarbose and Ouabain with the Glide XP score of ?12.8, ?11.9 and ?11.7 kcal/mol, respectively, whereas for MLP LipU protein, Digoxin (?9.2 kcal/mol), Indinavir (?8.2 kcal/mol) and Travoprost (?8.2 kcal/mol) showed highest affinity. These drugs remained bound in the active site pocket of MTB LipU and MLP LipU structure and interaction grew stronger after dynamics. RMSD, RMSF and Rg were found to be persistent throughout the simulation period. Hydrogen bonds along with large number of hydrophobic interactions stabilized the complex structures. Binding free energies obtained through Prime/MM-GBSA were found in the significant range from ?63.85 kcal/mol to ?34.57 kcal/mol for MTB LipU and ?71.33 kcal/mol to ?23.91 kcal/mol for MLP LipU. The report suggested high probability of these drugs to demolish the LipU activity and could be probable drug candidates to combat TB and leprosy disease.  相似文献   

4.
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, ?57.30?kcal/mol) and electrostatic solvation (ΔGsolv, ?36.86?kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand–protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1–D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.  相似文献   

5.
Endometriosis is a chronic inflammatory disease that occurs due to the presence of endometrial tissue outside the uterine cavity. It affects from 5% to 10% of women of reproductive age. High levels of matrix metalloproteinase (especially MMP-9) have been observed in women suffering from endometriosis. Thus, the aim of this study was to investigate the naturally anti-inflammatory compounds available from an algal source that can target the MMP-9 by various in silico approaches. The target 1L6J (Crystal structure of human matrix metalloproteinase MMP-9) structure was retrieved from the PDB database. Five compounds such as Eckol, Sargafuran, Vitamin E, Docosahexaenoic acid, Fucoidan and Elagolix were selected based on ‘Lipinski’s rule of five’ using the PubChem database. The pharmacokinetics, ADMET properties and biological activity of these compounds were predicted computationally using databases such as PreADME, SWISS-ADME, pkCSM and PASS. Comparative analysis of the bioactive compounds with the target was performed by AutoDock 4.2.6. Using LigPlot v.2.2, the target residues interacting with the compounds were visualised in a 2D manner. Based on the results, Eckol exhibited the highest binding energy value of −7.82 kcal/mol, whereas the Elagolix (control drug) showed a binding energy of −4.88 kcal. We conclude that Eckol can be a potent inhibitor of target MMP-9 with least side effects when compared to the control drug. Hence, this compound can be effectively explored by further in vitro and in vivo studies to develop more effective treatments for Endometriosis.  相似文献   

6.
Acetylcholinesterase (AChE) has been an effective target for insecticide development which is a very important aspect of the global fight against insect-borne diseases. The drastic reduction in the sensitivity of insects to AChE-targeting insecticides like organophosphates and carbamates have increased the need for insecticides of natural origin. In this study, we used Drosophila melanogaster as a model to investigate the insecticidal and AChE inhibitory potentials of Cymbopogon citratus and its bioactive compounds. Flies were exposed to 100 and 200 mg/mL C. citratus leaf extract for a 3-h survival assay followed by 45 min exposure for negative geotaxis and biochemical assays. Molecular docking analysis of 45 bioactive compounds of the plant was conducted against Drosophila melanogaster AChE (DmAChE). Exposure to C. citratus significantly reduced the survival rate of flies throughout the exposure period and this was accompanied by a significant decrease in percentage negative geotaxis, AChE activity, catalase activity, total thiol level and a significant increase in glutathione-S-transferase (GST) activity. The bioactive compounds of C. citratus showed varying levels of binding affinities for the enzyme. (+)-Cymbodiacetal scored highest (?9.407 kcal/mol) followed by proximadiol (?8.253 kcal/mol), geranylacetone (?8.177 kcal/mol), and rutin (?8.148 kcal/mol). The four compounds occupied the same binding pocket and interacted with important active site amino acid residues as the co-crystallized ligand (1qon). These compounds could be responsible for the insecticidal and AChE inhibitory potentials of C. citratus and they could be further explored in the development of AChE-targeting insecticides.  相似文献   

7.
A series of trisubstituted indolizine analogues has been designed as a result of a fragment-based approach to target the inhibition of mycobacterial enoyl-acyl carrier protein reductase. Anti-tuberculosis (TB) screening of the characterized compounds by a resazurin microplate assay method revealed that ethyl group at second position of indolizine nucleus exhibited activity against susceptible and multidrug-resistant strains of Mycobacterium tuberculosis at concentration of 5.5 and 11.3 μg/mL, respectively. A molecular docking study was also conducted to evaluate the stability of the active compounds, and compound with ethyl substitution at second position of indolizine nucleus showed the highest free binding energy of ΔG ?24.11 (kcal/mol), a low clash score of 3.04, and high lipo score of ?13.33. Indolizine analog with ethyl substitution at second position demonstrated Molecular Mechanics/Generalized Born Surface Area (?23.85 kcal/mol). Two molecular dynamics studies were computed (100 ps and 50 ns) to calculate the relationship between the potential and kinetic energies of the active anti-TB compound with time and temperature. The discovery of this lead may have a positive impact on anti-TB drug discovery.  相似文献   

8.
Acinetobacter baumannii, an opportunistic pathogen, has become multi-drug resistant (MDR) to major classes of antibacterial and poses grave threat to public health. The current study focused to screen novel phytotherapeutics against prioritised targets of Acinetobacter baumannii by computational investigation. Fourteen potential drug targets were screened based on their functional role in various biosynthetic pathways and the 3D structures of 9 targets were retrieved from Protein Data Bank and others were computationally predicted. By extensive literature survey, 104 molecules from 48 herbal sources were screened and subjected to virtual screening. Ten clinical isolates of A. baumannii were tested for antibiotic susceptibility towards clinafloxacin, imipenem and polymyxin-E. Computational screening suggested that Ajmalicine ((19α)-16, 17-didehydro-19-methyloxayohimban-16-carboxylic acid methyl ester from Rauwolfia serpentina), Strictamin (Akuammilan-17-oic acid methyl ester from Alstonia scholaris) and Limonin (7, 16-dioxo-7, 16-dideoxylimondiol from Citrus sps) exhibited promising binding towards multiple drug targets of A. baumannii in comparison with the binding between standard drugs and their targets. Limonin displayed promising binding potential (binding energy ?9.8 kcal/mol) towards diaminopimelate epimerase (DapF) and UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). Ajmalicine and Strictamin demonstrated good binding potential (?9.5, ?8.5 kcal/mol, respectively) towards MurA and shikimate dehydrogenase (?7.8 kcal/mol). Molecular dynamic simulations further validated the docking results. In vitro assay suggested that the tested isolates exhibited resistance to clinafloxacin, imipenem and polymyxin-E and the herbal preparations (crude extract) demonstrated a significant antibacterial potential (p ≤ .05). The study suggests that the aforementioned lead candidates and targets can be used for structure-based drug screening towards MDR A. baumannii.  相似文献   

9.
Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot is a perennial herb in the Zingiberaceae family with anticancer, anti-leptospiral, anti-inflammatory, antioxidant, antiulcer, and anti-herpes viral activities. While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitory activity of B. rotunda extract has been recently found, the active compounds contributing to this activity are yet unknown. The main protease (Mpro) enzyme is one of the most well established therapeutic targets among coronaviruses which plays a vital role in the maturation and cleavage of polyproteins during viral replication. The current work aims to identify active phytochemical substances from B. rotunda extract that can inhibit the replication of SARS-CoV-2 by using a combined molecular docking and dynamic simulation approaches. The virtual screening experiment revealed that fifteen molecules out of twenty-three major active compounds in the plant extract have acceptable drug-like characteristics. Alpinetin, Pinocembrin, and Pinostrobin have binding energies of ?7.51 kcal/mol, ?7.21 kcal/mol, and ?7.18 kcal/mol, respectively, and can suppress Mpro activity. The stability of the simulated complexes of the lead compounds with the drug-receptor is demonstrated by 100-ns MD simulations. The binding free energies study utilizing molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) show that the compounds and Mpro enzyme have favourable thermodynamic interactions, which are majorly driven by van der Waals forces. Thus, the selected bioactive phytochemicals from B. rotunda might be used as anti-SARS-CoV-2 candidates that target the Mpro enzyme.  相似文献   

10.
Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is one amongst the top 10 causes of death worldwide. The growing rise in antibiotic resistance compounded with slow and expensive drug discovery has further aggravated the situation. ‘Drug repurposing’ is a promising approach where known drugs are examined for a new indication. In the present study, we have attempted to identify drugs that could target MurB and MurE enzymes involved in the muramic acid synthesis pathway (Mur Pathway) in Mtb. FDA-approved drugs from two repositories i.e. Drug Bank (1932 drugs) and e-LEA3D (1852 drugs) were screened against these proteins. Several criteria were applied to study the protein-drug interactions and the consensus drugs were further studied by molecular dynamics (MD) simulation. Our study found Sulfadoxine (–7.3?kcal/mol) and Pyrimethamine (–7.8?kcal/mol) to show stable interaction with MurB while Lifitegrast (–10.5?kcal/mol) and Sildenafil (–9.1?kcal/mol) showed most reliable interaction with MurE. Furthermore, binding free energy (ΔGbind), RMSD and RMSF data and the number of hydrogen bonds corroborated the stability of interactions and hence these drugs for repurposing should be explored further.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
The interaction of bioactive protoberberine alkaloids berberine, palmatine, and coralyne with the DNA triplex poly(dT)⋅(poly(dA)⋅poly(dT)) was studied using biophysical and calorimetric techniques. All three alkaloids bound the triplex cooperatively. Berberine and palmatine predominantly stabilized the triplex structure, while coralyne stabilized both triplex and duplex structures as inferred from optical thermal melting profiles. Fluorescence quenching, polarization, and viscometric studies hinted at an intercalative mode of binding for the alkaloids to the triplex, coralyne being more strongly intercalated compared to partial intercalation of berberine and palmatine. The overall affinity of coralyne was two order higher (2.29×107 M −1) than that of berberine (3.43×105 M −1) and palmatine (2.34×105 M −1). Isothermal titration calorimetric studies revealed that the binding to the triplex was favored by negative enthalpy change (ΔH=−3.34 kcal/mol) with favorable entropy contribution (TΔS = 4.07 kcal/mol) for berberine, favored by almost equal negative enthalpy (ΔH =−3.88 kcal/mol) and entropy changes (TΔS = 3.37 kcal/mol) for palmatine, but driven by large enthalpy contributions (ΔH =−25.62 kcal/mol and TΔS =−15.21 kcal/mol) for coralyne. These results provide new insights on the binding of isoquinoline alkaloids to the DNA triplex structure.  相似文献   

12.
A new series of 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives 13ap were synthesized via aldol condensation of 3/4-nitroacetophenones with appropriately substituted aldehydes followed by cyclization of the formed chalcones with 4-methanesulfonylphenylhydrazine hydrochloride. All the synthesized compounds were evaluated for their cyclooxygenase (COX) inhibition, anti-inflammatory activity and ulcerogenic liability. All compounds were more potent inhibitors for COX-2 than COX-1. While most compounds showed good anti-inflammatory activity, compounds 13d, 13f, 13k and 13o were the most potent derivatives (ED50?=?66.5, 73.4, 79.8 and 70.5?μmol/kg, respectively) in comparison with celecoxib (ED50?=?68.1?μmol/kg). Compounds 13d, 13f, 13k and 13o (ulcer index?=?3.89, 4.86, 4.96 and 3.92, respectively) were 4–6 folds less ulcerogenic than aspirin (ulcer index?=?22.75) and showed approximately ulceration effect similar to celecoxib (ulcer index?=?3.35). In addition, molecular docking studies were performed for compounds 13d, 13f, 13k and 13o inside COX-2 active site which showed acceptable binding interactions (affinity in kcal/mol ?2.1774, ?6.9498) in comparison with celecoxib (affinity in kcal/mol ?6.5330).  相似文献   

13.
A mathematical treatment and an original microcalorimetric method are developed to verify an eventual competitive binding between any two substances for the same macromolecule. To apply this method, a competitive binding of L-tryptophan and one benzodiazepin (dipotassium chlorazepate) for human serum albumin is perfectly demonstrated.The association constants and the enthalpy variations are equal to 14 000 ± 2000 M?1 and ?6.6 ± 0.2 kcal/mol for human serum albumin · tryptophan complex and 13 000 ± 1000 M?1 and ?10.0 ± 0.2 kcal/mol for human serum albumin · chlorazepate complex. In all cases the stoichiometry is equal to one.The binding of tryptophan to human serum albumin is partially stereospecific; the association constant and the enthalpy variation for D-tryptophan complex are equal, respectively, to 1000 ± 200 M?1 and ?2.6 ± 0.3 kcal/mol.  相似文献   

14.
Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage. However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain unknown. In this study, we describe, to our knowledge, a new force-sensory mechanism for VWF-platelet binding, which addresses these questions, based on a combination of molecular dynamics (MD) simulations, atomic force microscopy (AFM), and microfluidic experiments. Our MD simulations demonstrate that the VWF A2 domain targets a specific region at the VWF A1 domain, corresponding to the binding site of the platelet glycoprotein Ibα (GPIbα) receptor, thereby causing its blockage. This implies autoinhibition of the VWF for the binding of platelets mediated by the A1-A2 protein-protein interaction. During force-probe MD simulations, a stretching force dissociated the A1A2 complex, thereby unblocking the GPIbα binding site. Dissociation was found to be coupled to the unfolding of the A2 domain, with dissociation predominantly occurring before exposure of the cleavage site in A2, an observation that is supported by our AFM experiments. This suggests that the A2 domain prevents platelet binding in a force-dependent manner, ensuring that VWF initiates hemostasis before inactivation by proteolytic cleavage. Microfluidic experiments with an A2-deletion VWF mutant resulted in increased platelet binding, corroborating the key autoinhibitory role of the A2 domain within VWF multimers. Overall, autoinhibition of VWF mediated by force-dependent interdomain interactions offers the molecular basis for the shear-sensitive growth of VWF-platelet aggregates, and might be similarly involved in shear-induced VWF self-aggregation and other force-sensing functions in hemostasis.  相似文献   

15.
Leptospira interrogans is the foremost cause of human leptospirosis. Discovery of novel lead molecules for common drug targets of more than 250 Leptospira serovars is of significant research interest. Lipopolysaccharide (LPS) layer prevent entry of hydrophobic agents into the cell and protect structural integrity of the bacterium. KDO-8-phosphate synthase (KdsA) catalyzes the first step of KDO biosynthesis that leads to formation of inner core of LPS. KdsA was identified as a potential drug target against Leptospira interrogans through subtractive genomic approach, metabolic pathway analysis, and comparative analysis (Amineni et al., 2010). The present study rationalizes a systematic implementation of homology modeling, docking, and molecular dynamics simulations to discover potent KdsA inhibitors (Pradhan et al., 2013; Umamaheswari et al., 2010). A reliable tertiary structure of KdsA in complex with substrate PEP was constructed based on co-crystal structure of Aquifex aeolicus KdsA synthase with PEP using Modeller9v10. Geometry-based analog search for PEP was performed from LigandInfo database to generate an in house library of 352 ligands. The ligand data-set was docked into KdsA active site through three-stage docking technique (HTVS, SP, and XP) using Glidev5.7. Thirteen lead molecules were found to have better binding affinity compared to PEP (XP Gscore?=??7.38?kcal/mol; Figure 1). The best lead molecule (KdsA- lead1 docking complex) showed XP Gscore of ?10.26?kcal/mol and the binding interactions (Figure 2) were correlated favorably with PEP–KdsA interactions (Figure 1). Molecular dynamics simulations of KdsA– lead1 docking complex for 10?ns had revealed that the complex (Figure 3) remained stable in closer to physiological environmental condition. The predicted pharmacological properties of lead1 were well within the range of a drug molecule with good ADME profile, hence, would be intriguing towards development of potent inhibitor molecule against KdsA of Leptospira.  相似文献   

16.
Acinetobacter baumannii is an alarming nosocomial pathogen that is resistant to multiple drugs. The pathogen is forefront of scientific attention because of high mortality and morbidity found for its complications in the past decade. As a consequence, identification of novel drug candidates and subsequent designing of novel chemical scaffolds is an imperative need of time. In the present study, we used a recently reported structure of BfmR enzyme and performed structure based virtual screening, MD simulation and binding free energies calculations. MD simulation revealed a profound movement of the best-characterized inhibitor towards the α4-β5-α5 face of the enzyme receiver domain, thus indicating its high affinity for this site compared to phosphorylation. Furthermore, it was observed that the enzyme and enzyme-inhibitor complex have high structure stability with mean RMSD of 1.2 and 1.1 Å, respectively. Binding free energy calculations for the complex unraveled high stability with MMGBSA score of ?26.21?kcal/mol and MMPBSA score of ?1.47?kcal/mol. Van der Waal energy was found highly favorable with value of ?30.25?kcal/mol and dominated significantly the overall binding energy. Furthermore, a novel WaterSwap assay was used to circumvent the limitations of MMGB/PBSA that complements the inhibitor affinity for enzyme active pocket as depicted by the low convergence of Bennett, TI and FEP algorithms. Results yielded from this study will not only give insight into the phenomena of inhibitor movement towards the enzyme receiver domain, but will also provide a useful baseline for designing derivatives with improved biological and pharmacokinetics profiles.

Communicated by Ramaswamy H. Sarma  相似文献   


17.
18.
We studied the inhibitory effects of isorhamnetin on mushroom tyrosinase by inhibition kinetics and computational simulation. Isorhamnetin reversibly inhibited tyrosinase in a mixed-type manner at K i=0.235 ± 0.013 mM. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate(ANS)-binding fluorescence showed that isorhamnetin did not induce significant changes in the tertiary structure of tyrosinase. To gain insight into the inactivation process, the kinetics were computed via time-interval measurements and continuous substrate reactions. The results indicated that inactivation induced by isorhamnetin was a first-order reaction with biphasic processes. To gain further insight, we simulated docking between tyrosinase and isorhamnetin. Simulation was successful (binding energies for Dock6.3: ?32.58 kcal/mol, for AutoDock4.2: ?5.66 kcal/mol, and for Fred2.2: ?48.86 kcal/mol), suggesting that isorhamnetin interacts with several residues, such as HIS244 and MET280. This strategy of predicting tyrosinase interaction in combination with kinetics based on a flavanone compound might prove useful in screening for potential natural tyrosinase inhibitors.  相似文献   

19.
Alles fließt?     
Von Willebrand factor is a central protein for normal hemostasis with diverse structural and functional domains. By binding to exposed subcellular collagen of injured vessels and to platelet receptors GPIb and GPIIb/IIIa, VWF creates a matrix for the subsequent blood coagulation process. Quantitative and qualitative defects of VWF correlate with von Willebrand disease, the most common bleeding disorder, whereas lack of its specific protease “ADAMTS13” is associated with a life‐threatening microangiopathy. The role of VWF in events like myocardial infarction or stroke is subject of current research.  相似文献   

20.
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most damaging diseases to rice across the world. Various chemicals have been employed so far for the management of bacterial leaf blight. On the other hand, these compounds are damaging to the ecosystem and have an impact on non-target species such as humans and animals. As a result, there is a need to create a new natural inhibitor for BLB management. Deformylase (PDF) enzyme is present in all eubacteria and its necessity in bacterial protein synthesis reveals it as an attractive target for drug development. In this study, the active components of Nigella sativa have been selected based on their previously reported antimicrobial activity and screened on the active site of bacterial PDF by the in silico art of techniques. Among these compounds, dithymoquinone and p-cymene strongly bind with the PDF enzyme with binding energy values of 7.77 kcal/mol and 7.26 kcal/mol, respectively, which is comparatively higher than the control compound (−6.73 kcal/mol). Hence, the “dithymoquinone-PDF” and “p-cymene-PDF” complexes were selected for further study, and their stability was assessed by molecular dynamic (MD) simulation. In MD simulation, both selected compounds exhibited steady-state interaction with PDF for 20 ns. It has been hypothesized that p-cymene and dithymoquinone inhibit peptide deformylase and could be used as antibacterials or pesticides against Xoo against the BLB disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号