首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made of the incorporation of methanol and bicarbonate into the cell constituents of denitrifying or aerobic methanol grown and autotrophic H2–O2–CO2 grown Hyphomicrobium sp. 53-49. Cells were incubated with [14C]methanol or [14C]bicarbonate, and the distribution of the radioactivity in the nonvolatile constituents of ethanol extracts of cells was examined. When denitrifying grown cells were incubated with [14C]methanol, the major part of the radioactivity was fixed to serine as the first stable compound. Aerobic methanol grown cells also fixed [14C]methanol mainly to serine. These results suggest that methanol grown cells assimilate methanol by the serine pathway. When denitrifying or aerobic methanol grown cells were incubated with [14C]bicarbonate, malate was mainly observed as a nonvolatile compound in the initial period of the incubation. Autotrophic grown cells also fixed the major part of [14C]bicarbonate to malate. In this case, phosphoglyceric acid was found in the phosphorylated compounds area.  相似文献   

2.
Two fungi were isolated from soil which grew on 0.1~0.2% formaldehyde as the sole carbon source, and identified as Gliocladium deliquescens and Paecilomyces varioti. Both the strains could grow on 5% methanol and 5% Na-formate, while the former could grow even on 7% methanol. Metabolic pathways were traced through two dimensional paper chromatography and autoradiographic techniques using 14C-formaldehyde, 14C-methanol or 14C-CO2 as substrates.

The intracellular metabolites were persued and their quantitative variation with time was measured. Along with the fact that serine and malate appeared in the earlier time, then appeared organic acids and amino acids belonging to TCA cycle, and the fact that hydroxy-pyruvate reductase and phosphoenolpyruvate carboxylase activities were much stronger in methanol culture than in ethanol culture, it was concluded that the two fungi followed the serine pathway in assimilating C1-compounds. Oxidation enzymes of methanol and formaldehyde were also studied, and an oxidizing system was found besides usual NAD linked methanol or formaldehyde dehydrogenases.  相似文献   

3.
4.
Preparations of the dissolved organic compounds released by photosynthesizing marine phytoplankton have been obtained with14carbon activities as high as 1.5 × 105 dpm/ml. The radioisotope content of the preparations resides wholly in dissolved organic compounds of low molecular weight (MW<3500), which are uncontaminated by residual14C-labeled inorganic carbon. The labeled compunds arise through photosynthetic fixation and do not appear to be products of cell lysis during the incubation or to originate from cell damage during the filtration step employed.  相似文献   

5.
The need for aeration of microcosms duringmineralization of 14C-labeled compounds in highoxygen demand environments was assessed using activecompost-soil mixtures as the model system. Rapidmineralization of 14C-hexadecane occurred incontinuously aerated microcosms while nomineralization occurred in unaerated microcosms. Dailyflushing with air also yielded no mineralization.Mineralization of 14C-glucose was much lessdependent on aeration. The alkaline solution volumeand number of CO2 traps required for continuousaeration were calculated and tested experimentally.  相似文献   

6.
13C NMR was used to study the effect of oxygen on methanol oxidation by a type II methanotrophic bacterium isolated from a bioreactor in which methane was used as electron donor for denitrification. Under high (35–25%) oxygen conditions the first step of methanol oxidation to formaldehyde was much faster than the following conversions to formate and carbon dioxide. Due to this the accumulation of formaldehyde led to a poisoning of the cells. A more balanced conversion of 13C-labelled methanol to carbon dioxide was observed at low (1–5%) oxygen concentrations. In this case, formaldehyde was slowly converted to formate and carbon dioxide. Formaldehyde did not accumulate to inhibitory levels. The oxygen-dependent formation of formaldehyde and formate from methanol is discussed kinetically and thermodynamically. Journal of Industrial Microbiology & Biotechnology (2001) 26, 9–14. Received 04 March 2000/ Accepted in revised form 07 November 2000  相似文献   

7.
Summary A denitrifying bacterium capable of pyridine mineralization under anaerobic conditions was isolated from polluted soil. The bacterium, identified as Alcaligenes sp., was used in inoculation experiments. A subsurface sediment from a polluted site was amended with 10 g/g 14C-labeled pyridine, and 250 g/g nitrate, and then inoculated with the bacterium at an inoculum size of 4.5 × 107 cells/g. After 44 h incubation at 28° C under anaerobic conditions, 67% of the radioactivity was recovered as 14CO2: 2% was extracted with 50% methanol, and 24% was recovered by combustion of the sediment. Analysis of the methanol extract revealed that no pyridine could be detected in the inoculated sediment. In contrast, mineralization of pyridine by the native microflora in the sediment occurred much more slowly: after 7 days of incubation only 10% of the added radioactivity was recovered as 14CO2. At an inoculum size of 2 × 103 cells/g pyridine mineralization was not as effective as at an inoculum size of 2 × 107 cells/g. It is presumed that suppression of the introduced bacteria by the native microflora of the sediment prevents degradation at a low inoculum size. Amending the sediment with nitrate and phosphate improved pyridine mineralization by the introduced bacterium. These findings demonstrate the feasibility of using soil inoculation anaerobically for the bioremediation of pyridine-polluted soils.  相似文献   

8.
The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique) genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF)-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14)C-labeled compounds to (14)CO(2) indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT), trimethylamine (TMA), trimethylamine N-oxide (TMAO), and dimethylsulfoniopropionate (DMSP) were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14)C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35%) than of C1 compounds (2-6%) into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2) in the upper ocean.  相似文献   

9.
The oxidation of one carbon compounds (methane, methanol, formaldehyde, formate) and primary alcohols (ethanol, propanol, butanol) supported the assimilation of [1-14C]acetate by cell suspensions of type I obligate methylotroph; Pseudomonas methanica, Texas strain, and type II obligate methylotroph, Methylosinus trichosporium, strain PG. The amount of oxygen consumed and substrate oxidized correlated with the amount of [1-14C]acetate assimilated during oxidation of C-1 compounds and primary alcohols.Oxidation of methanol, formaldehyde, and primary alcohols in extracts of Pseudomonas methanica, Texas strain, and Methylosinus trichosporium, strain PG, was catalyzed by a phenazine methosulfate linked, ammonium ion dependent methanol dehydrogenase. The oxidation of aldehydes was catalyzed by a phenazine methosulfate linked, ammonium ion independent aldehyde dehydrogenase. Formate was oxidized by a NAD+ linked formate dehydrogenase.Deceased.This work was supported by Grant GB 8173 from the National Science Foundation and by a grant from the Robert A. Welch Foundation.  相似文献   

10.
Both ouabain, 0.1 mM, and veratridine, 0.05 mM, increased the release of14C-labeled compounds from rat cortical slices prelabeled with14C-adenine and incubated in vitro. The increment in radioactivity released by both depolarizing agents was almost entirely a result of increases in adenosine, inosine, and hypoxanthine. However, the distribution of these three compounds in the ouabain-induced efflux (adenosine, 12%; inosine, 51%; hypoxanthine, 36%) contrasted with that evoked by veratridine (adenosine, 42%; inosine, 15%; hypoxanthine, 38%). Phenytoin significantly reduced the efflux of14C-labeled compounds produced by both ouabain and veratridine, but phenobarbital had no effect. The intracortical injection of adenosine, inosine, and hypoxanthine has been shown to induce epileptiform discharges in rats, and it is suggested that the inhibitory effect of phenytoin on the release of adenine derivatives may play a role in its antiepileptic action.  相似文献   

11.
Fermentative and methanogenic bacteria have been found repeatedly as important members of microbial flora in anoxic zones of the subsurface—in pristine as well as in contaminated groundwater aquifers. These bacteria, which together with obligate proton reducers form complex methanogenic communities, are significant as decomposers of organic matter under conditions of exogenous electron acceptor depletion. Their metabolic activity has been demonstrated in laboratory microcosms derived from aquifer material, and also in the subsurface in situ. Methanogenic communities have been shown to transform numerous organic pollutants, or even to completely degrade these compounds with the production of carbon dioxide and methane. Depending on the chemical structure of the pollutant, such a compound can be used as an electron donor and a carbon/energy source for fermentative microorganisms (which is typically the case with highly reduced compounds); alternatively, a highly oxidized pollutant can be used as a potential electron acceptor or electron sink. This review addresses fermentative/methanogenic degradation of chlorinated and nonchlorinated aromatic hydrocarbons and phenols by subsurface microorganisms; for comparison, it briefly relates also other types of anaerobic transformations (under sulfate‐reducing, iron‐reducing, and denitrifying conditions). Furthermore, it outlines transformation pathways, those that are proposed as well as those that are already partially proved, for aromatic hydrocarbons and phenols under fermentative/methanogenic conditions; finally, it discusses the relevance of these processes to bioremediation of contaminated groundwater aquifers.  相似文献   

12.
Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45°C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to <45°C were composed of blue-green and eukaryotic algae that adapted rapidly to ambient temperatures. An increase in the percentage extracellular release (PER) of14C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their ability to survive large temperature fluctuations and are similar to those of natural hot springs.This paper was prepared in connection with work under Contract No. DE-AC09-76SR00001 with the U.S. Department of Energy.  相似文献   

13.
《Free radical research》2013,47(6):339-347
The buffer substance tris(hydroxymethyl)aminomethane (Tris) is converted to formaldehyde in an hydroxyl radical producing model system and in rat liver microsomes, and to CO2 in rat hepatocytes and in the intact rat. In microsomes, formaldehyde formation from Tris is inhibited by catalase, by the antioxidant propylgallate and by the iron chelator deferoxamine, formaldehyde formation is stimulated by the addition of Fe (II) EDTA. In hepatocytes, the formation of [14C] CO2 from [14C] Tris is inhibited by propylgallate and by the iron chelator o-phenanthroline and is stimulated by the presence of a xanthine oxidase system plus Fe (II) EDTA in the medium. In the intact rat, the administration of [14C] Tris results in the exhalation of [14C] CO2. The results indicate that an oxidant formed via a Fenton-type reaction, possibly the hydroxyl radical, may be involved in the formation of one-carbon compounds from Tris.  相似文献   

14.
Previous results have shown that cyanamide or crotonaldehyde are effective inhibitors of the oxidation of formaldehyde by the low-Km mitochondrial aldehyde dehydrogenase, but do not affect the activity of the glutathione-dependent formaldehyde dehydrogenase. These compounds were used to evaluate the enzyme pathways responsible for the oxidation of formaldehyde generated during the metabolism of aminopyrine or methanol by isolated hepatocytes. Both cyanamide and crotonaldehyde inhibited the production of 14CO2 from 14C-labeled aminopyrine by 30-40%. These agents caused an accumulation of formaldehyde which was identical to the loss in CO2 production, indicating that the inhibition of CO2 production reflected an inhibition of formaldehyde oxidation. The oxidation of methanol was stimulated by the addition of glyoxylic acid, which increases the rate of H2O2 generation. Crotonaldehyde inhibited CO2 production from methanol, but caused a corresponding increase in formaldehyde accumulation. The partial sensitivity of CO2 production to inhibition by cyanamide or crotonaldehyde suggests that both the mitochondrial aldehyde dehydrogenase and formaldehyde dehydrogenase contribute towards the metabolism of formaldehyde which is generated from mixed-function oxidase activity or from methanol, just as both enzyme systems contribute towards the metabolism of exogenously added formaldehyde.  相似文献   

15.
We examined the unitrophic metabolism of acetate and methanol individually and the mixotrophic utilization of these compounds by using detailed 14C-labeled tracer studies in a strain of Methanosarcina barkeri adapted to grow on acetate as the sole carbon and energy source. The substrate consumption rate and methane production rate were significantly lower on acetate alone than during the unitrophic or mixotrophic metabolism of methanol. Cell yields (in grams per mole of substrate) were identical during exponential growth on acetate and exponential growth on methanol. During unitrophic metabolism of acetate, the methyl moiety accounted for the majority of the CH4 produced, but 14% of the CO2 generated originated from the methyl moiety. This correlated with the concurrent reduction of equivalent amounts of the C-1 of acetate to CH4. 14CH4 was also produced from added 14CO2, although to a lesser extent than from reduction of the C-1 of acetate. During mixotrophic metabolism, methanol and acetate were catabolized simultaneously. The rates of 14CH4 and 14CO2 generation from [2-14C]acetate were logarithmic and higher in mixotrophic than in unitrophic cultures at substrate concentrations of 50 mM. A comparison of the oxidoreductase activities in cell extracts of the acetate-adapted strain grown on acetate and of strain MS grown on methanol or on H2 plus CO2 indicated that the pyruvate, α-ketoglutarate, and isocitrate dehydrogenase activities remained constant, whereas the CO dehydrogenase activity was significantly higher (5,000 nmol/min per mg of protein) in the acetate-adapted strain. These results suggested that a significant intramolecular redox pathway is possible for the generation of CH4 from acetate, that energy metabolism from acetate by M. barkeri is not catabolite repressed by methanol, and that the acetate-adapted strain is a metabolic mutant with derepressed CO dehydrogenase activity.  相似文献   

16.
The anaerobic biodegradation of tetrachloroethene commonly results in the accumulation of chlorinated intermediates such as cis-1,2-dichloroethene (cDCE). Frequently, groundwater contaminated with chlorinated ethenes discharges to natural wetlands. The goal of this study was to quantitatively evaluate the effects of wetland plants and microorganisms on the fate of cDCE in the wetland rhizosphere. To accomplish this goal, a novel dual-compartment wetland microcosm was designed. A Phragmites australis individual was maintained in the microcosm, which was operated with continuous flows of air and mineral medium through the foliar and rhizosphere compartments, respectively, to incorporate mass transfer/transport processes that are important in natural wetlands and allow steady-state assessment of changes in dissolved O2 and cDCE or [1,2–14C]cDCE levels. Substantial amounts of [14C]cDCE were phytovolatilized through a healthy P. australis individual to the foliar chamber. Rhizodegradation by native microorganisms associated with P. australis roots also converted substantial amounts of [14C]cDCE to 14C-labeled CO2 and non-volatile compounds, presumably through cometabolic reactions that could be enhanced by the release of O2 and exudates by P. australis. These results suggest that, in some cases, the intrinsic capacity of native wetland plants and microorganisms to remove cDCE from the rhizosphere may be substantial.  相似文献   

17.
The decomposition of three different 14C-labeled cellulose substrates (plant holocellulose, plant cellulose prepared from 14C-labeled beech wood (Fagus sylvatica) and bacterial cellulose produced by Acetobacter xylinum) in samples from the litter and mineral soil layer of a beechwood on limestone was studied. In a long-term (154 day) experiment, mineralization of cellulose materials, production of 14C-labeled water-soluble compounds, and incorporation of 14C in microbial biomass was in the order Acetobacter cellulose > holocellulose > plant cellulose in both litter and soil. In general, mineralization of cellulose, production of 14C-labeled water-soluble compounds, and incorporation of 14C in microbial biomass were more pronounced, but microbial biomass 14C declined more rapidly in litter than in soil. In short-term (14 day) incubations, mineralization of cellulose substrates generally corresponded with cellulase and xylanase activities in litter and soil. Pre-incubation with trace amounts of unlabeled holocellulose significantly increased the decomposition of 14C-labeled cellulose substrates and increased cellulase activity later in the experiment but did not affect xylanase activity. The sum of 14CO2 production, 14C in microbial biomass, and 14C in water-soluble compounds is considered to be a sensitive parameter by which to measure cellulolytic activity in soil and litter samples in short-term incubations. Shorter periods than 14 days are preferable in assays using Acetobacter cellulose, because the decomposition of this substrate is more variable than that of holocellulose and plant cellulose.Offprint requests to: S. Scheu.  相似文献   

18.
Lignin biodegradation in a variety of natural materials was examined using specifically labeled synthetic 14C-lignins. Natural materials included soils, sediments, silage, steer bedding, and rumen contents. Both aerobic and anaerobic incubations were used. No 14C-labeled lignin biodegradation to labeled gaseous products under anaerobic conditions was observed. Aerobic 14C-labeled lignin mineralization varied with respect to type of natural material used, site, soil type and horizon, and temperature. The greatest observed degradation occurred in a soil from Yellowstone National Park and amounted to over 42% conversion of total radioactivity to 14CO2 during 78 days of incubation. Amounts of 14C-labeled lignin mineralization in Wisconsin soils and sediments were significantly correlated with organic carbon, organic nitrogen, nitrate nitrogen, exchangeable calcium, and exchangeable potassium.  相似文献   

19.
Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were used to study the metabolism of deuterated n-alkanes (C6 to C12) and 1-13C-labeled n-hexane by a highly enriched sulfate-reducing bacterial culture. All substrates were activated via fumarate addition to form the corresponding alkylsuccinic acid derivatives as transient metabolites. Formation of d14-hexylsuccinic acid in cell extracts from exogenously added, fully deuterated n-hexane confirmed that this reaction was the initial step in anaerobic alkane metabolism. Analysis of resting cell suspensions amended with 1-13C-labeled n-hexane confirmed that addition of the fumarate occurred at the C-2 carbon of the parent substrate. Subsequent metabolism of hexylsuccinic acid resulted in the formation of 4-methyloctanoic acid, and 3-hydroxy-4-methyloctanoic acid was tentatively identified. We also found that 13C nuclei from 1-13C-labeled n-hexane became incorporated into the succinyl portion of the initial metabolite in a manner that indicated that 13C-labeled fumarate was formed and recycled during alkane metabolism. Collectively, the findings obtained with a sulfate-reducing culture using isotopically labeled alkanes augment and support the previously proposed pathway (H. Wilkes, R. Rabus, T. Fischer, A. Armstroff, A. Behrends, and F. Widdel, Arch. Microbiol. 177:235-243, 2002) for metabolism of deuterated n-hexane by a denitrifying bacterium.  相似文献   

20.
The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH4 +) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40–50% of [14C]-RDX was mineralized to 14CO2 in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号