首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noonan syndrome (NS) is a common autosomal dominant congenital disorder which could cause the congenital cardiopathy and cancer predisposition. Previous studies reported that the knock-in mouse models of the mutant D61G of SHP2 exhibited the major features of NS, which demonstrated that the mutation D61G of SHP2 could cause NS. To explore the effect of D61G mutation on SHP2 and explain the high activity of the mutant, molecular dynamic simulations were performed on wild type (WT) of SHP2 and the mutated SHP2-D61G, respectively. The principal component analysis and dynamic cross-correlation mapping, associated with secondary structure, showed that the D61G mutation affected the motions of two regions (residues Asn 58-Thr 59 and Val 460-His 462) in SHP2 from β to turn. Moreover, the residue interaction networks analysis, the hydrogen bond occupancy analysis and the binding free energies were calculated to gain detailed insight into the influence of the mutant D61G on the two regions, revealing that the major differences between SHP2-WT and SHP2-D61G were the different interactions between Gly 61 and Gly 462, Gly 61 and Ala 461, Gln 506 and Ile 463, Gly 61 and Asn 58, Ile 463 and Thr 466, Gly 462 and Cys 459. Consequently, our findings here may provide knowledge to understand the increased activity of SHP2 caused by the mutant D61G.  相似文献   

2.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

3.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

4.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

5.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

6.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

7.
The formation of mutagens by amino-carbonyl reactions of 20 kinds of amino acid and sugars after heating at 100 degrees C for 10 h was examined by the Ames test. The browned solutions of Gly, Ala, Val, Leu, Ile, Ser, Thr, Gln, Lys X HCl, Arg, Phe, Cys, Met and Pro with Glc caused mutation of Salmonella typhimurium TA100 and/or TA98 with or without S9 mix. The presence of S9 mix increased the mutagenic activity of the browned solutions of Cys and Phe with Glc on TA100 and of those of Gly, Ala, Val, Ile and Cys on TA98, but decreased the activity of other solutions. No revertants of Salmonella were induced by the browned solutions of Trp, Tyr, Asp, Asn, Glu and (Cys)2 with Glc. Among positive browned solutions, Cys, Lys, Arg and Phe had the stronger activity, but their activity was weak compared with that of pyrolysates or chemical mutagens such as Trp-P-1, Trp-P-2 and 4-nitroquinoline-N-oxide. The mutagenic activity of the browned solutions increased with prolongation of heating time and varied with the pH of the reaction mixture. Fru, Gal, Ara, Xyl, Man, Lac and Suc also had the ability to form mutagens in the browning reactions with amino acids.  相似文献   

8.
Using directed evolution and site‐directed mutagenesis, we have isolated a highly thermostable variant of Aspergillus niger glucoamylase (GA), designated CR2‐1 . CR2‐1 includes the previously described mutations Asn20Cys and Ala27Cys (forming a new disulfide bond), Ser30Pro, Thr62Ala, Ser119Pro, Gly137Ala, Thr290Ala, His391Tyr and Ser436Pro. In addition, CR2‐1 includes several new putative thermostable mutations, Val59Ala, Val88Ile, Ser211Pro, Asp293Ala, Thr390Ser, Tyr402Phe and Glu408Lys, identified by directed evolution. CR2‐1 GA has a catalytic efficiency (kcat/Km) at 35°C and a specific activity at 50°C similar to that of wild‐type GA. Irreversible inactivation tests indicated that CR2‐1 increases the free energy of thermoinactivation at 80°C by 10 kJ mol?1 compared with that of wild‐type GA. Thus, CR2‐1 is more thermostable (by 5 kJ mol?1 at 80°C) than the most thermostable A. niger GA variant previously described, THS8 . In addition, Val59Ala and Glu408Lys were shown to individually increase the thermostability in GA variants by 1 and 2 kJ mol?1, respectively, at 80°C.  相似文献   

9.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

10.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

11.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

12.
Twenty tryptic peptides were isolated from the performic acid-oxidized He chain of ricin D by Dowex 1 × 2 column chromatography followed by paper chromatography. The amino acids contained in these peptides accounted for 218 out of 266 residues in the whole protein. The amino acid sequences of nine peptides were determined by manual liquid phase or automatic solid phase Edman degradation, and N- and C-terminal sequences of the He chain of ricin D were established to be NH2–Ile–Phe–Pro–Lys–Gln–Tyr–Pro–Ile–Ile– and Cys–Ala–Pro–Pro–Pro–Ser–Ser–Gln–Phe, respectively.  相似文献   

13.
Abstract

The over-activation of Ras/mitogen-activated protein kinase (MAPK) signaling pathway associated with a variety of cancers is usually related with abnormal activation of Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2). For this purpose, SHP2 has attracted extensive interest as a potential target for cancer treatment. RMC-4550, as a newly developed selective inhibitor of SHP2, possesses an overwhelming advantage over the previous generation inhibitor SHP099 in terms of in vitro activity. However, the binding mode of SHP2 with RMC-4550 and the reason for the high efficiency of RMC-4550 as SHP2 inhibitor at molecular level are still unclear. Therefore, in this study, the binding mode of RMC-4550 with SHP2 and the superiorities of RMC-4550 as inhibitor at binding affinity and dynamic interactive behavior with SHP2 were probed by molecular docking and molecular dynamics (MD) simulations. By comparing the results of molecular docking, it was found that SHP2 formed more tight interaction with RMC-4550 than that with SHP099. Subsequently, a series of post-dynamic analyses on three simulation trajectories (SHP2WT, SHP2SHP099 and SHP2RMC-4550) were performed and found that the SHP2 protein bound with RMC-4550 maintained a firmer interaction between N-Src-homology 2 (N-SH2) and PTP domain throughout the MD simulation, leading to a more stable protein conformation. The finding here provides new clues for the design of SHP2 inhibitor against the over-activation of Ras/MAPK pathway.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

15.
In this study, we purified and characterized the procoagulant protein FV‐2 from Daboia russelli siamensis (Myanmar) venom using ion‐exchange chromatography on CM‐Sephadex C‐50 and gel filtration on SuperdexTM G‐75 column. The activation of factor X and prothrombin was determined, respectively, by specific chromogenic substrates. The fibrinogen‐clotting activity, thermal stability, and pH stability were also determined. The N‐treminal sequence was determined by the National Center of Biomedical Analysis of China. In the end, FV‐2 was achieved with a molecular weight of 13,608.0 Da. It could activate factor X, but did not affect prothrombin or fibrinogen. The suitable pH was 6.5–7.5, and the suitable temperature ranged from 25 to 60°C. The N‐terminal sequence was Asn‐Phe‐Phe‐Gln‐Phe‐Ala‐Glu‐Met‐Ile‐Val‐Lys‐Met‐Thr‐Gly‐Lys. Taken together, our studies suggest that FV‐2 is a factor X–activating enzyme, which can activate factor X to factor Xa, but it has no effect on prothrombin and fibrinogen.  相似文献   

16.
An α-mannosidase was purified from developing Ginkgo biloba seeds to apparently homogeneity. The molecular weight of the purified α-mannosidase was estimated to be 120 kDa by SDS–PAGE in the presence of 2-mercaptoethanol, and 340 kDa by gel filtration, indicating that Ginkgo α-mannosidase may function in oligomeric structures in the plant cell. The N-terminal amino acid sequence of the purified enzyme was Ala–Phe–Met–Lys–Tyr–X–Thr–Thr–Gly–Gly–Pro–Val–Ala–Gly–Lys–Ile–Asn–Val–His–Leu–. The α-mannosidase activity for Man5GlcNAc1 was enhanced by the addition of Co2+, but the addition of Zn2+, Ca2+, or EDTA did not show any significant effect. In the presence of cobalt ions, the hydrolysis rate for pyridylaminated Man6GlcNAc1 was significantly faster than that for pyridylaminated Man6GlcNAc2, suggesting the possibility that this enzyme is involved in the degradation of free N-glycans occurring in developing plant cells (Kimura, Y., and Matsuo, S., J. Biochem., 127, 1013–1019 (2000)). To our knowledge, this is the first report showing that plant cells contain an α-mannosidase, which is activated by Co2+ and prefers the oligomannose type free N-glycans bearing only one GlcNAc residue as substrate.  相似文献   

17.
Mutations Ile279 --> Ala, Ile283 --> Ala, Glu284 --> Ala, His285 --> Ala, His285 --> Lys, His285 --> Glu, Phe286 --> Ala, and His288 --> Ala in transmembrane helix M3 of the Na+,K(+)-ATPase were studied. Except for His285 --> Ala, these mutations were compatible with cell viability, permitting analysis of their effects on the overall and partial reactions of the Na+,K(+)-transport cycle. In Ile279 --> Ala and Ile283 --> Ala, the E1 form accumulated, whereas in His285 --> Lys and His285 --> Glu, E1P accumulated. Phe286 --> Ala displaced the conformational equilibria of dephosphoenzyme and phosphoenzyme in parallel in favor of E2 and E2P, respectively, and showed a unique enhancement of the E1P --> E2P transition rate. These effects suggest that M3 undergoes significant rearrangements in relation to E1-E2 and E1P-E2P conformational changes. Because the E1-E2 and E1P-E2P conformational equilibria were differentially affected by some of the mutations, the phosphorylated conformations seem to differ significantly from the dephospho forms in the M3 region. Mutation of His285 furthermore increased the Na(+)-activated ATPase activity in the absence of K+ ("Na(+)-ATPase activity"). Ile279 --> Ala, Ile283 --> Ala, and His288 --> Ala showed reduced Na+ affinity of the E1 form. The rate of Na(+)-activated phosphorylation from ATP was reduced in Ile279 --> Ala and Ile283 --> Ala, and these mutants showed evidence similar to Glu329 --> Gln of destabilization of the Na(+)-occluded state.  相似文献   

18.
Summary We have developed a useful strategy for identifying amino acid spin systems and side-chain carbon resonance assignments in small 15N-, 13C-enriched proteins. Multidimensional constant-time pulsed field gradient (PFG) HCC(CO)NH-TOCSY experiments provide side-chain resonance frequency information and establish connectivities between sequential amino acid spin systems. In PFG HCC(CO)NH-TOCSY experiments recorded with a properly tuned constant-time period for frequency labeling of aliphatic 13C resonances, phases of cross peaks provide information that is useful for identifying spin system types. When combined with 13C chemical shift information, these patterns allow identification of the following spin system types: Gly, Ala, Thr, Val, Leu, Ile, Lys, Arg, Pro, long-type (i.e., Gln, Glu and Met), Ser, and AMX-type (i.e., Asp, Asn, Cys, His, Phe, Trp and Tyr).  相似文献   

19.
Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号