首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of biofilm formation on membrane performance were evaluated for a submerged membrane bioreactor (sMBR) system with six different types of micro- and ultrafiltration membranes (working volume = 19 l). After operation for 24 h the permeability of the membranes with a larger pore size (microfiltration) decreased to that of the membranes with a much smaller pore size (ultrafiltration). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed that biofilms could reduce the influence of the membrane surface properties. The chemical oxygen demand (COD) removal efficiency was 95% for the oily wastewater treatment in the sMBR where the filtration process made an important contribution (47% based on feed COD). Significant enhancement in COD removal occurred at the initial filtration stage because of biofilm formation and the dynamic member role of the biofilm layer. Membranes with various pore sizes had approximately the same permeate quality that was attributed to the biofilm on the membrane surfaces. Nevertheless, the ultrafiltration membranes had 43% more COD removal efficiency than the other applied membranes at the beginning of filtration (before biofilm formation) because of the smaller pore sizes and better sieving.  相似文献   

2.
The effects of biofilm formation on membrane performance were evaluated for a submerged membrane bioreactor (sMBR) system with six different types of micro- and ultrafiltration membranes (working volume=19 l). After operation for 24 h the permeability of the membranes with a larger pore size (microfiltration) decreased to that of the membranes with a much smaller pore size (ultrafiltration). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed that biofilms could reduce the influence of the membrane surface properties. The chemical oxygen demand (COD) removal efficiency was 95% for the oily wastewater treatment in the sMBR where the filtration process made an important contribution (47% based on feed COD). Significant enhancement in COD removal occurred at the initial filtration stage because of biofilm formation and the dynamic member role of the biofilm layer. Membranes with various pore sizes had approximately the same permeate quality that was attributed to the biofilm on the membrane surfaces. Nevertheless, the ultrafiltration membranes had 43% more COD removal efficiency than the other applied membranes at the beginning of filtration (before biofilm formation) because of the smaller pore sizes and better sieving.  相似文献   

3.
Abstract

An experimental system has been developed that allows the monitoring of biofilm development on supports exposed to water of different characteristics. The system consists of a series of packed-bed reactors filled with glass beads, and by periodically removing biofilm attached to these beads for off-line analyses this provides a means for monitoring biofilm development. Despite its reduced dimensions (6.9 cm long and 1.58 cm in diameter), the experimental system used has a sampling surface of 90.3 cm2 (including only the surface of the glass beads). This allows reproducible and representative samples to be taken from different water systems, providing a reliable and economic method for evaluating in situ the formation of biofilms from different environments. The set-up of the entire experimental system was constructed to meet the demands of field experiments in a well-defined hydrodynamic environment and to allow easy removal of samples for biomass quantification and microscopic observation. Data obtained using this device can be used as an indicator of the risk of biofilm formation in different water systems. This indicator, “the biofilm accumulation potential”, represents an effective and representative tool for the monitoring of biofilm development in an integrated antifouling strategy, in order to help keep biofouling, scaling and microbial risks under control. According to the experiments with the packed-bed reactors used with a high flow regime, the ratio TCN/HPC could provide an indication of the state of the biofilm, and lower ratios could indicate a higher biofilm accumulation potential.  相似文献   

4.
The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water.  相似文献   

5.
Reverse osmosis (RO) membrane systems are widely used in water purification plants. Reduction in plant performance due to biofilm formation over the membrane is an inherent problem. As quorum sensing (QS) mechanisms of microorganisms have been reported to be involved in the formation of biofilm, ways are sought for quorum quenching (QQ) and thereby prevention of biofilm formation. In this study using a chemostat culture run for seven days in a CDC reactor it was found that a natural QQ compound, vanillin considerably suppressed bacterial biofilm formation on RO membrane. There was 97% reduction in biofilm surface coverage, when grown in the presence of vanillin. Similarly, the average thickness, total biomass and the total protein content of the biofilm that formed in the presence of vanillin were significantly less than that of the control. However vanillin had no effect on 1-day old pre-formed biofilm.  相似文献   

6.
Membrane crystallization is an innovative concept to treat water and recover minerals from concentrates. Thus, it will also be beneficial to the existing mineral extraction industry. This process combines membrane distillation (MD) with crystallization. While MD produces water and concentrates the feed, crystalliser forms crystals from supersaturated minerals in the concentrated feed. This review covers principles of this process, factors affecting membrane crystallization for water treatment, application of membrane crystallization, resource recovery and the fouling of membrane crystallization. Membrane crystallization could recover many minerals including sodium, magnesium, barium, strontium, and lithium. However, fouling is a major challenge for its widespread implementation. Further directions for future research and development of this process are also considered with a view to the sustainable operation of the process.  相似文献   

7.
Increased regulatory constraints on industrial releases of atmospheric volatile organic compounds (VOCs) have resulted in an interest in using biofilters, bioscrubbers and air/liquid membranes for treatment of vapor phase waste streams. In this report, we describe the comparison of the use of two fundamentally different types of membrane module systems that allow the rapid diffusion of vapor phase aromatics and oxygen to an active biofilm for subsequent biodegradation. One system used a commercial membrane module containing microporous polypropylene fibers while the other used a nonporous silicone tubing membrane module for the delivery of substrate (a mixture of benzene, ethylbenzene, toluene, and xylenes [BTEX]) and electron acceptor (O2). Tests of the systems under similar conditions with BTEX in the vapor feed stream showed significant performance advantages for the silicone membrane system. The average surface-area-based BTEX removal rate for the microporous membrane system over 500 h of operation was 7.88 μg h−1 cm−2 while the rate for the silicone membrane system was 23.87 μg h−1 cm−2. The percentages of BTEX removal were also consistently better in the silicone membrane system versus the microporous system. Part of the performance problem associated with the microporous membrane system appeared to be internal water condensation and possible plugging of the pores with biomass over time that could not be resolved with vapor phase backflushing. Journal of Industrial Microbiology & Biotechnology (2002) 28, 245–251 DOI: 10.1038/sj/jim/7000235 Received 17 August 2001/ Accepted in revised form 03 December 2001  相似文献   

8.
The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and decreased production. The bacterial community of the RO membrane biofilm was clearly different from the bacterial community present at other locations in the RO plant, indicating the development of a specialized bacterial community on the RO membranes. The typical freshwater phylotypes in the RO membrane biofilm (i.e., Proteobacteria, Cytophaga-Flexibacter-Bacteroides group, and Firmicutes) were also present in the water sample fed to the plant, suggesting a feed water origin. However, the relative abundances of the different species in the mature biofilm were different from those in the feed water, indicating that the biofilm was actively formed on the RO membrane sheets and was not the result of a concentration of bacteria present in the feed water. The majority of the microorganisms (59% of the total number of clones) in the biofilm were related to the class Proteobacteria, with a dominance of Sphingomonas spp. (27% of all clones). Members of the genus Sphingomonas seem to be responsible for the biofouling of the membranes in the RO installation.  相似文献   

9.
Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.  相似文献   

10.
More effective control of membrane biofouling in membrane bioreactors (MBRs) lies in the fundamental understanding of the pioneer microorganisms responsible for surface colonization that leads to biofilm formation. In this study, the composition of the planktonic and sessile microbial communities inhabiting four laboratory-scale MBR systems were compared using amplified ribosomal DNA restriction analysis (ARDRA) and 16S ribosomal DNA gene sequencing. The ARDRA results suggest that the microbial communities on membrane surfaces could be very different from the ones in the suspended biomass. Phylogenetic analysis based on the 16S rRNA gene sequences provided a list of bacteria that might be the pioneers of surface colonization on microfiltration membranes. The results further suggested that research on the mechanisms of cell attachment in such an engineering environment could be critical for future development of appropriate biofouling control strategies.  相似文献   

11.
Microbial surface adhesion to surfaces and subsequent biofilm establishment are ubiquitous in drinking water systems, which often contribute to deteriorated water quality. Disinfectants are common agents applied to drinking water controlling microbial propagation, yet the underlying mechanisms of how disinfectants function to regulate microbial activity and thereby biofilm development remains elusive. We experimentally studied the effects of chlorination on extracellular polymeric substance (EPS) production, and its impacts on early-stage biofilm formation in a model drinking water system. Results showed that low-level chlorine (≤ 1.0 mg/L) stimulated microbial EPS (especially of proteins) excretion that favored early-stage biofilm formation. Microbes experiencing higher chlorination (>1.0 mg/L) exhibited clearly suppressed growth associated with reduced EPS release, consequently yielding less biofilm formation. Removal of cell-attached proteins and polysaccharides diminished biofilm formation, which highlighted the critical role of EPS (especially protein components) in biofilm development. A negative correlation between chlorination-mediated microbial protein production and cell surface charge suggested that chlorine disinfection may modify cell surface properties through regulation of microbial EPS excretion and thereby mediate biofilm formation. With these quantitative estimations, this study provides novel insights into how chlorination-mediated EPS excretion shapes early-stage biofilm formation, which is essential for practical functioning of drinking water systems.  相似文献   

12.
Hybrid biofilm membrane bioreactor (BF-MBR) system featuring new mechanisms for recovering the excess energy from air bubbling flow in the biofilm reactor and for controlling membrane biofouling was preliminarily investigated in this study. Alternative design of the biofilm reactor was developed to utilize the bubbling flow from the lower aerobic chamber to generate a mechanical mixing in the upper anoxic chamber in the vertical biofilm reactor. Suspended solid (SS) concentration in the system was hydrodynamically controlled to be lower than 70 mg/L. The ultraviolet (UV) inactivation unit was integrated with the membrane filtration tank to limit biological activities for biofoulant productions and to decelerate the unwanted biofilm formation in the permeate tube. Membrane relaxations at various operating conditions were studied for optimum membrane fouling reductions under low SS environment. Combinations of membrane relaxation and the UV inactivation significantly prolonged sustainable operation periods of the membrane filtration in the BF-MBR process.  相似文献   

13.
The biofilm thickness in membrane biofilm reactors (MBfRs) is an important factor affecting system performance because excessive biofilm formation on the membrane surface inhibits gas diffusion to the interior of the biofilm, resulting in a significant reduction in the performance of contaminant removal. This study provides innovative insights into the control of biofilm thickness in O2-based MBfRs by using the quorum quenching (QQ) method. The study was carried out in MBfRs operated at different gas pressures and hydraulic retention times (HRTs) using QQ beads containing Rhodococcus sp. BH4 at different amounts. The highest performance was observed in reactors operated with 0.21 ml QQ bead/cm2 membrane surface area, 12 HRTs and 1.40 atm. Over this period, the performance increase in chemical oxygen demand (COD) removal was 25%, while the biofilm thickness on the membrane surface was determined to be 250 μm. Moreover, acetate and equivalent oxygen flux results reached 6080 and 10 640 mg·m−2·d−1 maximum values, respectively. The extracellular polymeric substances of the biofilm decreased significantly with the increase of gas pressure and QQ beads amount. Polymerase chain reaction denaturing gradient gel electrophoresis results showed that the microbial community in the MBfR system changed depending on operating conditions and bead amount. The results showed that the QQ method was an effective method to control the biofilm thickness in MBfR and provide insights for future research.  相似文献   

14.
Biofouling is a serious problem on filter membranes of water purification systems due to formation of bacterial biofilms, which can be detrimental to the membrane performance. Biofouling occurs on membrane surface and therefore greatly influences the physical and chemical aspects of the surface. Several membranes including microfiltration, ultrafiltration, and reverse osmosis (RO) membranes were used to learn about the anti-biofouling properties of vanillin affecting the membrane performances. Vanillin has been recognized as a potential quorum quenching compound for Aeromonas hydrophila biofilms. The initial attachment and dynamics of biofilm growth were monitored using scanning electron microscopy and confocal laser scanning microscopy. Biofilm quantities were measured using a plate count method and total protein determinations. Vanillin addition was effective in the prevention of biofilm formation on the tested membrane surfaces. Among the membranes, RO membranes made with cellulose acetate showed the most substantial reduction of biofilm formation by addition of vanillin. The biofilm reduction was confirmed by the results of surface coverage, biomass and protein accumulation. The HPLC spectrum of the spent culture with vanillin addition showed that vanillin may interfere with quorum sensing molecules and thus prevent the formation of the biofilms.  相似文献   

15.
Biofouling, the combined effect of microorganism and biopolymer accumulation, significantly reduces the process efficiency of membrane bioreactors (MBRs). Here, four biofilm components, alpha-polysaccharides, beta-polysaccharides, proteins and microorganisms, were quantified in MBRs. The biomass of each component was positively correlated with the transmembrane pressure increase in MBRs. Proteins were the most abundant biopolymer in biofilms and showed the fastest rate of increase. The spatial distribution and co-localization analysis of the biofouling components indicated at least 60% of the extracellular polysaccharide (EPS) components were associated with the microbial cells when the transmembrane pressure (TMP) entered the jump phase, suggesting that the EPS components were either secreted by the biofilm cells or that the deposition of these components facilitated biofilm formation. It is suggested that biofilm formation and the accumulation of EPS are intrinsically coupled, resulting in biofouling and loss of system performance. Therefore, strategies that control biofilm formation on membranes may result in a significant improvement of MBR performance.  相似文献   

16.
Quorum sensing gives rise to biofilm formation on the membrane surface, which in turn causes a loss of water permeability in membrane bioreactors (MBRs) for wastewater treatment. Enzymatic quorum quenching was reported to successfully inhibit the formation of biofilm in MBRs through the decomposition of signal molecules, N-acyl homoserine lactones (AHLs). The aim of this study was to elucidate the mechanisms of quorum quenching in more detail in terms of microbial population dynamics and proteomics. Microbial communities in MBRs with and without a quorum quenching enzyme (acylase) were analyzed using pyrosequencing and compared with each other. In the quorum quenching MBR, the rate of transmembrane pressure (TMP) rise-up was delayed substantially, and the proportion of quorum sensing bacteria with AHL-like autoinducers (such as Enterobacter, Pseudomonas, and Acinetobacter) also decreased in the entire microbial community of mature biofilm in comparison to that in the control MBR. These factors were attributed to the lower production of extracellular polymeric substances (EPS), which are known to play a key role in the formation of biofilm. Proteomic analysis using the Enterobacter cancerogenus strain ATCC 35316 demonstrates the possible depression of protein expression related to microbial attachments to solid surfaces (outer membrane protein, flagellin) and the agglomeration of microorganisms (ATP synthase beta subunit) with the enzymatic quorum quenching. It has been argued that changes in the microbial population, EPS and proteins via enzymatic quorum quenching could inhibit the formation of biofilm, resulting in less biofouling in the quorum quenching MBR.  相似文献   

17.
Abstract

Phosphate limitation has been suggested as a preventive method against biofilms. P-limited feed water was studied as a preventive strategy against biofouling in cooling towers (CTs). Three pilot-scale open recirculating CTs were operated in parallel for five weeks. RO permeate was fed to the CTs (1) without supplementation (reference), (2) with supplementation by biodegradable carbon (P-limited) and (3) with supplementation of all nutrients (non-P-limited). The P-limited water contained ≤10?µg PO4 l?1. Investigating the CT-basins and coupons showed that P-limited water (1) did not prevent biofilm formation and (2) resulted in a higher volume of organic matter per unit of active biomass compared with the other CTs. Exposure to external conditions and cycle of concentration were likely factors that allowed a P concentration sufficient to cause extensive biofouling despite being the limiting compound. In conclusion, phosphate limitation in cooling water is not a suitable strategy for CT biofouling control.  相似文献   

18.
In this study, a membrane biofilm reactor was investigated for aerobic methane oxidation coupled indirectly to denitrification, a process potentially useful for denitrification of nitrate-contaminated waters and wastewaters using methane as external electron donor. Methane and oxygen were supplied from the interior of a silicone tube to a biofilm growing on its surface. We found that the membrane biofilm reactor was to some extent self-regulating in the supply of methane and oxygen. Although the intramembrane partial pressures of methane and oxygen were varied, the oxygen-to-methane ratio penetrating the membrane tended towards 1.68. Both nitrate removal rate and dissolved organic carbon (DOC) production rate appeared to be positively correlated with intramembrane methane pressure. Based on measured nitrate removal rates, DOC production rates, and nitrate removal efficiency, the possibility of using this method for treatment of a hypothetical wastewater was evaluated.  相似文献   

19.
In order to investigate biofouling problems, the fundamental behaviors of initial bacterial adhesion and biofilm development on four different nanofiltration (NF) membranes were evaluated using Pseudomonas aeruginosa PAO1 as a model bacterial strain. Initial cell adhesion was considerably higher on an aromatic polyamide-based NF membrane with a hydrophobic and rough surface, whereas cell aggregation on a polypiperazine-based NF membrane with a relatively hydrophilic and smooth surface was lower. Moreover, significant differences in the structural heterogeneity of the biofilms were observed among the four NF membranes. This study shows that the surface roughness and hydrophobicity of a membrane play an important role in determining initial cell adhesion, aggregation and favorable localization sites for colony formation. In addition, it was found that biofilm development was strongly influenced by the surface morphology of a membrane.  相似文献   

20.
Morato J  Codony F  Mas J 《Biofouling》2005,21(3-4):151-160
An experimental system has been developed that allows the monitoring of biofilm development on supports exposed to water of different characteristics. The system consists of a series of packed-bed reactors filled with glass beads, and by periodically removing biofilm attached to these beads for off-line analyses this provides a means for monitoring biofilm development. Despite its reduced dimensions (6.9 cm long and 1.58 cm in diameter), the experimental system used has a sampling surface of 90.3 cm2 (including only the surface of the glass beads). This allows reproducible and representative samples to be taken from different water systems, providing a reliable and economic method for evaluating in situ the formation of biofilms from different environments. The set-up of the entire experimental system was constructed to meet the demands of field experiments in a well-defined hydrodynamic environment and to allow easy removal of samples for biomass quantification and microscopic observation. Data obtained using this device can be used as an indicator of the risk of biofilm formation in different water systems. This indicator, "the biofilm accumulation potential", represents an effective and representative tool for the monitoring of biofilm development in an integrated antifouling strategy, in order to help keep biofouling, scaling and microbial risks under control. According to the experiments with the packed-bed reactors used with a high flow regime, the ratio TCN/HPC could provide an indication of the state of the biofilm, and lower ratios could indicate a higher biofilm accumulation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号