首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins of halophilic archaea function in high-salt concentrations that inactivate or precipitate homologous proteins from non-halophilic species. Haloadaptation and the mechanism behind the phenomenon are not yet fully understood. In order to obtain useful information, homology modeling studies of dihydrofolate reductases (DHFRs) from halophilic archaea were performed that led to the construction of structural models. These models were subjected to energy minimization, structural evaluation and analysis. Complementary approaches concerning calculations of the amino acid composition and visual inspection of the surfaces and cores of the models, as well as calculations of electrostatic surface potentials, in comparison to non-halophilic DHFRs were also performed. The results provide evidence that sheds some light on the phenomenon of haloadaptation: DHFRs from halophilic archaea may maintain their fold, in high-salt concentrations, by sharing highly negatively charged surfaces and weak hydrophobic cores.  相似文献   

2.
Haloalkane dehalogenases (HLDs) are enzymes that catalyze the cleavage of carbon-halogen bonds by a hydrolytic mechanism. Although comparative biochemical analyses have been published, no classification system has been proposed for HLDs, to date, that reconciles their phylogenetic and functional relationships. In the study presented here, we have analyzed all sequences and structures of genuine HLDs and their homologs detectable by database searches. Phylogenetic analyses revealed that the HLD family can be divided into three subfamilies denoted HLD-I, HLD-II, and HLD-III, of which HLD-I and HLD-III are predicted to be sister-groups. A mismatch between the HLD protein tree and the tree of species, as well as the presence of more than one HLD gene in a few genomes, suggest that horizontal gene transfers, and perhaps also multiple gene duplications and losses have been involved in the evolution of this family. Most of the biochemically characterized HLDs are found in the HLD-II subfamily. The dehalogenating activity of two members of the newly identified HLD-III subfamily has only recently been confirmed, in a study motivated by this phylogenetic analysis. A novel type of the catalytic pentad (Asp-His-Asp+Asn-Trp) was predicted for members of the HLD-III subfamily. Calculation of the evolutionary rates and lineage-specific innovations revealed a common conserved core as well as a set of residues that characterizes each HLD subfamily. The N-terminal part of the cap domain is one of the most variable regions within the whole family as well as within individual subfamilies, and serves as a preferential site for the location of relatively long insertions. The highest variability of discrete sites was observed among residues that are structural components of the access channels. Mutations at these sites modify the anatomy of the channels, which are important for the exchange of ligands between the buried active site and the bulk solvent, thus creating a structural basis for the molecular evolution of new substrate specificities. Our analysis sheds light on the evolutionary history of HLDs and provides a structural framework for designing enzymes with new specificities.  相似文献   

3.
In spite of the tremendous increase in the rate at which protein structures are being determined, there is still an enormous gap between the numbers of known DNA-derived sequences and the numbers of three-dimensional structures. In order to shed light on the biological functions of the molecules, researchers often resort to comparative molecular modeling. Earlier work has shown that when the sequence alignment is in error, then the comparative model is guaranteed to be wrong. In addition, loops, the sites of insertions and deletions in families of homologous proteins, are exceedingly difficult to model. Thus, many of the current problems in comparative molecular modeling are minor versions of the global protein folding problem. In order to assess objectively the current state of comparative molecular modeling, 13 groups submitted blind predictions of seven different proteins of undisclosed tertiary structure. This assessment shows that where sequence identity between the target and the template structure is high (> 70%), comparative molecular modeling is highly successful. On the other hand, automated modeling techniques and sophisticated energy minimization methods fail to improve upon the starting structures when the sequence identity is low (~30%). Based on these results it appears that insertions and deletions are still major problems. Successfully deducing the correct sequence alignment when the local similarity is low is still difficult. We suggest some minimal testing of submitted coordinates that should be required of authors before papers on comparative molecular modeling are accepted for publication in journals. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Thompson J  Baker D 《Proteins》2011,79(8):2380-2388
Prediction of protein structures from sequences is a fundamental problem in computational biology. Algorithms that attempt to predict a structure from sequence primarily use two sources of information. The first source is physical in nature: proteins fold into their lowest energy state. Given an energy function that describes the interactions governing folding, a method for constructing models of protein structures, and the amino acid sequence of a protein of interest, the structure prediction problem becomes a search for the lowest energy structure. Evolution provides an orthogonal source of information: proteins of similar sequences have similar structure, and therefore proteins of known structure can guide modeling. The relatively successful Rosetta approach takes advantage of the first, but not the second source of information during model optimization. Following the classic work by Andrej Sali and colleagues, we develop a probabilistic approach to derive spatial restraints from proteins of known structure using advances in alignment technology and the growth in the number of structures in the Protein Data Bank. These restraints define a region of conformational space that is high-probability, given the template information, and we incorporate them into Rosetta's comparative modeling protocol. The combined approach performs considerably better on a benchmark based on previous CASP experiments. Incorporating evolutionary information into Rosetta is analogous to incorporating sparse experimental data: in both cases, the additional information eliminates large regions of conformational space and increases the probability that energy-based refinement will hone in on the deep energy minimum at the native state.  相似文献   

5.
The protein structures of six comparative modeling targets were predicted in a procedure that relied on improved energy minimization, without empirical rules, to position all new atoms. The structures of human nucleoside diphosphate kinase NM23-H2, HPr from Mycoplasma capricolum, 2Fe-2S ferredoxin from Haloarcula marismortui, eosinophil-derived neurotoxin (EDN), mouse cellular retinoic acid protein I (CRABP1), and P450eryf were predicted with root mean square deviations on Cα atoms of 0.69, 0.73, 1.11, 1.48, 1.69, and 1.73 Å, respectively, compared to the target crystal structures. These differences increased as the sequence similarity between the target and parent proteins decreased from about 60 to 20% identity. More residues were predicted than form the common region shared by the two crystal structures. In most cases insertions or deletions between the target and the related protein of known structure were not correctly positioned. One two residue insertion in CRABP1 was predicted in the correct conformation, while a nine residue insertion in EDN was predicted in the correct spatial region, although not in the correct conformation. The positions of common cofactors and their binding sites were predicted correctly, even when overall sequence similarity was low. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
We developed a method for structure characterization of assembly components by iterative comparative protein structure modeling and fitting into cryo-electron microscopy (cryoEM) density maps. Specifically, we calculate a comparative model of a given component by considering many alternative alignments between the target sequence and a related template structure while optimizing the fit of a model into the corresponding density map. The method relies on the previously developed Moulder protocol that iterates over alignment, model building, and model assessment. The protocol was benchmarked using 20 varied target-template pairs of known structures with less than 30% sequence identity and corresponding simulated density maps at resolutions from 5A to 25A. Relative to the models based on the best existing sequence profile alignment methods, the percentage of C(alpha) atoms that are within 5A of the corresponding C(alpha) atoms in the superposed native structure increases on average from 52% to 66%, which is half-way between the starting models and the models from the best possible alignments (82%). The test also reveals that despite the improvements in the accuracy of the fitness function, this function is still the bottleneck in reducing the remaining errors. To demonstrate the usefulness of the protocol, we applied it to the upper domain of the P8 capsid protein of rice dwarf virus that has been studied by cryoEM at 6.8A. The C(alpha) root-mean-square deviation of the model based on the remotely related template, bluetongue virus VP7, improved from 8.7A to 6.0A, while the best possible model has a C(alpha) RMSD value of 5.3A. Moreover, the resulting model fits better into the cryoEM density map than the initial template structure. The method is being implemented in our program MODELLER for protein structure modeling by satisfaction of spatial restraints and will be applicable to the rapidly increasing number of cryoEM density maps of macromolecular assemblies.  相似文献   

8.
The existing H1N1 (2009) swine flu is pandemic in nature and is responsible for global economic losses and fatalities. Among the eight gene segments of H1N1, hemagglutinin (HA) plays a major role in the attachment of the virus to the host cell surface and entry of viral RNA into the host cell leads to infection. In this study, sequence and phylogenetic analysis of the H1N1 (2009) HA, from Mexico City along with 1952 sequences, from different subtypes of pandemic influenza A virus were studied and results showed that the closest relationship of H1N1 (2009) Mexico strain was with the H1N1 (2007) Mallard Norway strain. Analysis of secondary structures predicted from the protein sequence revealed that diminishing of alpha helixes was observed in many areas of the sequences between the years 2005 to 2010. Conversely, analysis at the structural level is necessary to critically assess the functional significance. Structural level investigation was therefore done for the above said proteins by constructing the 3D structure of these proteins through homology modeling. The models were validated and structural level similarities were evaluated through superimposition. Subsequently, docking studies were done to find the binding mode of the sialic acid (SA) with influenza HA. Molecular dynamics simulations were executed to study the interactions of SA molecule with the HA. Energetic analysis reveals that van der Waal interaction is more favorable for binding of HA with SA of the whole influenza virus. Binding pocket analysis shows that intensities of H-bond donor and acceptor are more in H1N1 (2009).  相似文献   

9.
Two putative haloalkane dehalogenases (HLDs) of the HLD‐I subfamily, DccA from Caulobacter crescentus and DsaA from Saccharomonospora azurea, have been identified based on sequence comparisons with functionally characterized HLD enzymes. The two genes were synthesized, functionally expressed in E. coli and shown to have activity toward a panel of haloalkane substrates. DsaA has a moderate activity level and a preference for long (greater than 3 carbons) brominated substrates, but little activity toward chlorinated alkanes. DccA shows high activity with both long brominated and chlorinated alkanes. The structure of DccA was determined by X‐ray crystallography and was refined to 1.5 Å resolution. The enzyme has a large and open binding pocket with two well‐defined access tunnels. A structural alignment of HLD‐I subfamily members suggests a possible basis for substrate specificity is due to access tunnel size.  相似文献   

10.
We describe a database of protein structure alignments as well as methods and tools that use this database to improve comparative protein modeling. The current version of the database contains 105 alignments of similar proteins or protein segments. The database comprises 416 entries, 78,495 residues, 1,233 equivalent entry pairs, and 230,396 pairs of equivalent alignment positions. At present, the main application of the database is to improve comparative modeling by satisfaction of spatial restraints implemented in the program MODELLER (?ali A, Blundell TL, 1993, J Mol Biol 234:779–815). To illustrate the usefulness of the database, the restraints on the conformation of a disulfide bridge provided by an equivalent disulfide bridge in a related structure are derived from the alignments; the prediction success of the disulfide dihedral angle classes is increased to approximately 80%, compared to approximately 55% for modeling that relies on the stereochemistry of disulfide bridges alone. The second example of the use of the database is the derivation of the probability density function for comparative modeling of the cis/trans isomerism of the proline residues; the prediction success is increased from 0% to 82.9% for cis-proline and from 93.3% to 96.2% for trans-proline. The database is available via electronic mail.  相似文献   

11.
A tertiary structure model of the Abl-SH3 domain is predicted by using homology modeling techniques coupled to molecular dynamics simulations. Two template proteins were used, Fyn-SH3 and Spc-SH3. The refined model was extensively checked for errors using criteria based on stereochemistry, packing, solvation free-energy, accessible surface areas, and contact analyses. The different checking methods do not totally agree, as each one evaluates a different characteristic of protein structures. Several zones of the protein are more susceptible to incorporating errors. These include residues 13, 15, 35, 39, 45, 46, 50, and 60. An interesting finding is that the measurement of the Cα chirality correlated well with the rest of the criteria, suggesting that this parameter might be a good indicator of correct local conformation. Deviations of more than 4 degrees may be indicative of poor local structure. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.  相似文献   

13.
An improved generalized comparative modeling method, GENECOMP, for the refinement of threading models is developed and validated on the Fischer database of 68 probe-template pairs, a standard benchmark used to evaluate threading approaches. The basic idea is to perform ab initio folding using a lattice protein model, SICHO, near the template provided by the new threading algorithm PROSPECTOR. PROSPECTOR also provides predicted contacts and secondary structure for the template-aligned regions, and possibly for the unaligned regions by garnering additional information from other top-scoring threaded structures. Since the lowest-energy structure generated by the simulations is not necessarily the best structure, we employed two structure-selection protocols: distance geometry and clustering. In general, clustering is found to generate somewhat better quality structures in 38 of 68 cases. When applied to the Fischer database, the protocol does no harm and in a significant number of cases improves upon the initial threading model, sometimes dramatically. The procedure is readily automated and can be implemented on a genomic scale.  相似文献   

14.
Punta M  Cavalli A  Torre V  Carloni P 《Proteins》2003,52(3):332-338
A dimeric model of the cyclic nucleotide-binding domain of the all-alpha homomeric cyclic nucleotide-gated channel from bovine retinal rod is constructed. The model, based on the structure of the fairly homologous catabolite gene activator protein (Weber and Steitz, J Mol Biol 1987;198:311-326), is obtained by use of comparative modeling and molecular dynamics simulations. Our model provides a structural basis for the experimentally measured difference in activity between cAMP and cGMP, as well as the different solvent accessibilities of GLY597 in the complex with cGMP, with cAMP and in the protein in free state. In addition, it provides support for the rearrangement of the domain C helix on ligand binding and releasing proposed by Matulef et al. (Neuron 1999;24:443-452).  相似文献   

15.
The clarification of the physico-chemical determinants underlying amyloid deposition is critical for our understanding of misfolding diseases. With this purpose we have performed a systematic all-atom molecular dynamics (MD) study of a series of single point mutants of the de novo designed amyloidogenic peptide STVIIE. Sixteen different 50ns long simulations using explicit solvent have been carried out starting from four different conformations of a polymeric six-stranded beta-sheet. The simulations have provided evidence for the influence of a small number of site-specific hydrophobic interactions on the packing and stabilization of nascent aggregates, as well as the interplay between side-chain interactions and the net charge of the molecule on the strand arrangement of polymeric beta-sheets. This MD analysis has also shed light into the origin of the position dependence on mutation of beta-sheet polymerization that was found experimentally for this model system. Our results suggest that MD can be applied to detect critical positions for beta-sheet aggregation within a given amyloidogenic stretch. Studies similar to the one presented here can guide site-directed mutations or the design of drugs that specifically disrupt the key stabilizing interactions of beta-sheet aggregates.  相似文献   

16.
Pentameric ligand-gated ion channels (pLGICs) conduct upon the binding of an agonist and are fundamental to neurotransmission. New insights into the complex mechanisms underlying pLGIC gating, ion selectivity and modulation have recently been gained via a series of crystal structures in prokaryotes and Caenorhabditis elegans, as well as computational studies relying on these structures. Here, we review contributions from a variety of computational approaches, including normal-mode analysis, automated docking and fully atomistic molecular dynamics simulation. Examples from our own research, particularly concerning interactions with general anaesthetics and lipids, are used to illustrate predictive results complementary to crystallographic studies.  相似文献   

17.
Homology modeling methods have been used to construct models of two proteins—the histidine-containing phosphocarrier protein (HPr) from Mycoplasma capricolum and human eosinophil-derived neurotoxin (EDN). Comparison of the models with the subsequently determined X-ray crystal structures indicates that the core regions of both proteins are reasonably well reproduced, although the template structures are closer to the X-ray structures in these regions—possible enhancements are discussed. The conformations of most of the side chains in the core of HPr are well reproduced in the modeled structure. As expected, the conformations of surface side chains in this protein differ significantly from the X-ray structure. The loop regions of EDN were incorrectly modeled—reasons for this and possible enhancements are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Costa V  Carloni P 《Proteins》2003,50(1):104-113
Sarcoplasmic reticulum Ca(2+)- ATPase pumps Ca(2+) ions from muscle cells to the sarcoplasmic reticulum. Here we use molecular dynamics and electrostatic modeling to investigate structural and dynamical features of key intermediates in the Ca(2+) binding process of the protein. Structural models of the protein (containing either two, one, or no calcium ions in the transmembrane domain) are constructed based on the X-ray structure by Toyoshima et al. (Nature 2000;405:647-655). The protein is embedded in a water/octane bilayer, which mimics the water/membrane environment. Our calculations provide information on the hydration of the two Ca(2+) ions, not emerging from the X-ray structure. Furthermore, they indicate that uptake of the metal ions causes large structural rearrangements of the metal binding sites. In addition, they suggest that the two ions reach their binding sites via two specific pathways. Finally, they allow identification of residues in the outer mouth of the protein that might interact with the Ca(2+) ions during the binding process.  相似文献   

19.
Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号