首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nucleotide binding and oligomerization domain (NOD2) is a key component of innate immunity that is highly specific for muramyl dipeptide (MDP)—a peptidoglycan component of bacterial cell wall. MDP recognition by NOD2–leucine rich repeat (LRR) domain activates NF‐κB signaling through a protein–protein interaction between caspase activating and recruitment domains (CARDs) of NOD2 and downstream receptor interacting and activating protein kinase 2 (RIP2). Due to the lack of crystal/NMR structures, MDP recognition and CARD–CARD interaction are poorly understood. Herein, we have predicted the probable MDP and CARD–CARD binding surfaces in zebrafish NOD2 (zNOD2) using various in silico methodologies. The results show that the conserved residues Phe819, Phe871, Trp875, Trp929, Trp899, and Arg845 located at the concave face of zNOD2–LRR confer MDP recognition by hydrophobic and hydrogen bond (H‐bond) interactions. Molecular dynamics simulations reveal a stable association between the electropositive surface on zNOD2–CARDa and the electronegative surface on zRIP2–CARD reinforced mostly by H‐bonds and electrostatic interactions. Importantly, a 3.5 Å salt bridge is observed between Arg60 of zNOD2–CARDa and Asp494 of zRIP2–CARD. Arg11 and Lys53 of zNOD2–CARDa and Ser498 and Glu508 of zRIP2–CARD are critical residues for CARD–CARD interaction and NOD2 signaling. The 2.7 Å H‐bond between Lys104 of the linker and Glu508 of zRIP2–CARD suggests a possible role of the linker for shaping CARD–CARD interaction. These findings are consistent with existing mutagenesis data. We provide first insight into MDP recognition and CARD–CARD interaction in the zebrafish that will be useful to understand the molecular basis of NOD signaling in a broader perspective. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Peptidoglycan recognition proteins (PGRPs) play crucial role in innate immunity for both invertebrates and vertebrates, owing to their prominent ability in detecting and eliminating invading bacteria. In the present study, two short PGRPs from mollusk Solen grandis (designated as SgPGRP-S1 and SgPGRP-S2) were identified, and their expression patterns, both in tissues and toward three PAMPs stimulation, were then characterized. The full-length cDNA of SgPGRP-S1 and SgPGRP-S2 was 1672 and 1285 bp, containing an open reading frame (ORF) of 813 and 426 bp, respectively, and deduced amino acid sequences showed high similarity to other members of PGRP superfamily. Both SgPGRP-S1 and SgPGRP-S2 encoded a PGRP domain. The motif of Zn2+ binding sites and amidase catalytic sites were well conserved in SgPGRP-S1, but partially conserved in SgPGRP-S2. The two PGRPs exhibited different tissue expression pattern. SgPGRP-S1 was highly expressed in muscle and hepatopancreas, while SgPGRP-S2 was highly in gill and mantle. The mRNA expression of SgPGRP-S1 could be induced acutely by stimulation of PGN, and also moderately by β-1,3-glucan, but not by LPS, while expression of SgPGRP-S2 was significantly up-regulated (P < 0.01) when S. grandis was stimulated by all the three PAMPs, though the expression levels were relatively lower than SgPGRP-S1. Our results suggested SgPGRP-S1 and SgPGRP-S2 could serve as pattern recognition receptors (PRRs) involved in the immune recognition of S. grandis, and they might perform different functions in the immune defense against invaders.  相似文献   

4.
The innate immune system offers the first line of defense against invading microbial pathogens through the recognition of conserved pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). The host innate immune system through PRRs, the sensors for PAMPs, induces the production of cytokines. Among different families of PRRs, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and its mitochondrial adaptor ie, the mitochondrial antiviral-signaling (MAVS) protein, are crucial for RLR-triggered interferon (IFN) antiviral immunity. Recent studies have shown that the N-terminal caspase recruitment domain (CARD) and transmembrane domain play a pivotal role in oligomerization of black carp MAVS (BcMAVS), crucial for the host innate immune response against viral invasion. In this study, we have used molecular modeling, docking, and molecular dynamics (MD) simulation approaches to shed molecular insights into the oligomerization mechanism of BcMAVSCARD. MD simulation and interaction analysis portrayed that the type-I surface patches of BcMAVS CARD make the major contribution to the interaction. Moreover, the evidence from surface patches and critical residues involved in the said interaction is found to be similar to that of the human counterpart and requires further investigation for legitimacy. Altogether, our study provided crucial information on oligomerization of BcMAVS CARDs and might be helpful for clarifying the innate immune response against pathogens and downstream signaling in fishes.  相似文献   

5.
Abstract

The over-activation of Ras/mitogen-activated protein kinase (MAPK) signaling pathway associated with a variety of cancers is usually related with abnormal activation of Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2). For this purpose, SHP2 has attracted extensive interest as a potential target for cancer treatment. RMC-4550, as a newly developed selective inhibitor of SHP2, possesses an overwhelming advantage over the previous generation inhibitor SHP099 in terms of in vitro activity. However, the binding mode of SHP2 with RMC-4550 and the reason for the high efficiency of RMC-4550 as SHP2 inhibitor at molecular level are still unclear. Therefore, in this study, the binding mode of RMC-4550 with SHP2 and the superiorities of RMC-4550 as inhibitor at binding affinity and dynamic interactive behavior with SHP2 were probed by molecular docking and molecular dynamics (MD) simulations. By comparing the results of molecular docking, it was found that SHP2 formed more tight interaction with RMC-4550 than that with SHP099. Subsequently, a series of post-dynamic analyses on three simulation trajectories (SHP2WT, SHP2SHP099 and SHP2RMC-4550) were performed and found that the SHP2 protein bound with RMC-4550 maintained a firmer interaction between N-Src-homology 2 (N-SH2) and PTP domain throughout the MD simulation, leading to a more stable protein conformation. The finding here provides new clues for the design of SHP2 inhibitor against the over-activation of Ras/MAPK pathway.

Communicated by Ramaswamy H. Sarma  相似文献   

6.
The chromatin modification is regulated by the histone acetyltransferase (HAT) and histone deacetyltransferase (HDAC) enzymes; abnormal function of these enzymes leads to several malignant diseases. The inhibition of these enzymes using natural ligand molecules is an emerging technique to cure these diseases. The in vitro analysis of natural molecules, venenatine, spinosine, palmatine and taxodione are giving the best inhibition rate against p300 HAT enzyme. However, the detailed understanding of binding and the stability of these molecules with p300 HAT is not yet known. The aim of the present study is focused to determine the binding strength of the molecules from molecular dynamics simulation analysis. The docking analysis confirms that, the venenatine (−6.97 kcal/mol - conformer 8), spinosine (−6.52 kcal/mol conformer −10), palmatine (−5.72 kcal/mol conformer-3) and taxodione (−4.99 kcal/mol conformer-4) molecules form strong hydrogen bonding interactions with the key amino acid residues (Arg1410, Thr1411 and Trp1466) present in the active site of p300. In the molecular dynamics (MD) simulation, the spinosine retain these key interactions with the active site amino acid residues (Arg1410, Thr1411, and Trp1466) than venenatine and are stable throughout the simulation. The RMSD value of spinosine (0.5 to 1.3 Å) and venenatine (0.3 to 1.3 Å) are almost equal during the MD simulation. However, during the MD simulation, the intermolecular interaction between venenatine and the active site amino acid residues (Arg1410, Thr1411, and Trp1466) decreased on comparing with the spinosine-p300 interaction. The binding free energy of the spinosine (−15.30 kcal/mol) is relatively higher than the venenatine (−11.8 kcal/mol); this increment is attributed to the strong hydrogen bonding interactions of spinosine molecule with the active site amino acid residues of p300.  相似文献   

7.
B‐cell lymphoma (Bcl‐2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl‐2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl‐2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time‐scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein–protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl‐2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl‐2 inhibitors to explain their influence in homo‐complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero‐complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393–413, 2016.  相似文献   

8.
Protein kinase, casein kinase II (CK2), is ubiquitously expressed and highly conserved protein kinase that shows constitutive activity. It phosphorylates a diverse set of proteins and plays crucial role in several cellular processes. The catalytic subunit of this enzyme (CK2α) shows remarkable flexibility as evidenced in numerous crystal structures determined till now. Here, using analysis of multiple crystal structures and long timescale molecular dynamics simulations, we explore the conformational flexibility of CK2α. The enzyme shows considerably higher flexibility in the solution as compared to that observed in crystal structure ensemble. Multiple conformations of hinge region, located near the active site, were observed during the dynamics. We further observed that among these multiple conformations, the most populated conformational state was inadequately represented in the crystal structure ensemble. The catalytic spine, was found to be less dismantled in this state as compared to the “open” hinge/αD state crystal structures. The comparison of dynamics in unbound (Apo) state and inhibitor (CX4945) bound state exhibits inhibitor induced suppression in the overall dynamics of the enzyme. This is especially true for functionally important glycine‐rich loop above the active site. Together, this work gives novel insights into the dynamics of CK2α in solution and relates it to the function. This work also explains the effect of inhibitor on the dynamics of CK2α and paves way for development of better inhibitors.  相似文献   

9.
Abstract

Noonan syndrome with multiple lentigines (NSML), formerly known as LEOPARD syndrome (LS), is an autosomal dominant inherited multisystemic disorder. Most patients involve mutation in SHP2 encoded by tyrosine-protein phosphatase non-receptor type 11 (PTPN11) gene. Studies have shown that NSML-associated Y279C mutation exhibited the reduced phosphatase activity, leading to loss-of-function (LOF) of SHP2. However, the effect of the Y279C mutation on the SHP2 at the molecular level is unclear. In this study, molecular dynamics simulations of SHP2 wild-type (SHP2WT) and Y279C mutant (SHP2Y279C) were performed to investigate the structural differences in proteins after Y279C mutation and to find out the reason for loss-of-function of SHP2. Through a series of post-dynamic analyses, it was found that the protein occupied a smaller phase space after Y279C mutation, showing reduced flexibility. Specifically, due to the mutation of Y279C, the secondary structures of these two regions (residues Lys70-Ala72 and Gly462-Arg465) were significantly transformed from Turn to α-helix and β-strand. Furthermore, by calculating the residue interaction network, hydrogen bond occupancy and binding free energy, it was further revealed that the conformational differences between SHP2WT and SHP2Y279C systems were mainly caused by the differences in the interaction between Arg465–Phe469, Ile463–Gly467, Cys279–Lys70, Cys459–Ala72, Gly464–Phe71, Phe71–Ile463, Ile463–Ala505 and Arg465–Glu361. Consequently, this finding is expected to provide a new insight into the reason for loss-of-function of SHP2 caused by Y279C mutation.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
Solute carrier family 24 member 5 (SLC24A5) is a gene that is associated with oculocutaneous albinism type 6 (OCA6) disorder and is involved in skin and hair pigmentation. It is involved in the maturation of melanosomes and melanin synthesis. SLC24A5 gene is located in the chromosomal position of 15q21.1. The present study involves the use of computational techniques in order to obtain a detailed picture of the most probable mutations that are associated with SLC24A5. From the observed result it was found that the mutation S145F is most deleterious and disease associated is predicted using several bioinformatics tools. The 3-D structures of native and mutant (S145F) were modeled in order to understand protein functionality using ab initio Robetta server. The modeled structure validation was done with ERRAT, Verify-3D, Procheck and RAMPAGE Ramachandran plot analysis. The most validated structure undergoes molecular dynamics simulations (MDS) study to understand the structural and functional behaviour of the native and mutant proteins. The MDS result showed the more flexibility in the native SLC24A5 structure. Due to mutation in the SLC24A5 protein structure it became more rigid and might disturb the conformational changes and glycosylation function of protein structure and might play role in inducing the OCA6. This study provides a significant insight into the underlying molecular mechanism involved in albinism associated with OCA6. It further helps scientists to develop a drug therapy against OCA 6 disease.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
为了探究感红光视蛋白2基因opn1lw2在红光诱导斑马鱼(Danio rerio)皮肤色素细胞形成中的作用,针对AB品系野生型斑马鱼利用CRISPR/Cas9基因编辑技术敲除感红光视蛋白2基因opn1lw2,构建opn1lw2缺失的纯合opn1lw2-/-品系.使用光强(800±100)lx的红光LED灯(每天光照24...  相似文献   

12.
Schizophrenia is a mental illness; most affected people live in developing countries, and neither appropriate treatment nor commercial drugs are currently available. One possibility is to inhibit human-d-amino acid oxidase (h-DAAO). In this study, molecular dynamic simulations of the monomer, dimer and tetramer forms of h-DAAO complexed with the inhibitor 3-hydroxyquinolin-2(1H)-one(2) were performed. Seven residues, Leu51, Gln53, Leu215, Tyr228, Ile230, Arg283 and Gly313, were identified as essential for interacting with the inhibitor. Molecular docking of h-DAAO with pyrrole, quinoline and kojic acid derivatives, representing 69 known or potential h-DAAO inhibitors, was also performed. The results indicated that the activity of the inhibitor can be improved by modifying the compounds to have a substituent group capable of interacting with the side chain of Tyr228. Van der Waals interactions of the inhibitor with the hydrophobic pocket of h-DAAO and electrostatic interactions or H-bonds with Arg283 and Gly313 were important elements in determining the efficiency of the inhibitor. These results provide information on the interaction between h-DAAO and its inhibitors at the molecular level and can aid in the design of novel inhibitors against h-DAAO for new drug development in the treatment of schizophrenia.  相似文献   

13.
Transforming growth factor type 1 receptor (ALK5) is kinase associated with a wide variety of pathological processes, and inhibition of ALK5 is a good strategy to treat many kinds of cancer and fibrotic diseases. Recently, a series of compounds have been synthesized as ALK5 inhibitors. However, the study of their selectivity against other potential targets remains elusive. In this research, a data-set of ALK5 inhibitors were collected and studied based on the combination of 2D-QSAR, molecular docking and molecular dynamics simulation. The quality of QSAR models were assessed statistically by F, R2, and R2ADJ, proved to be credible. The cross-validations for the models (q2LOO = 0.571 and 0.629, respectively) showed their robustness, while the external validations (r2test = 0.703 and 0.764, respectively) showed their predictive power. Besides, the predicted binding free energy results calculated by MM/GBSA method were in accordance with the experimental data, and the van der Waals energy term was the factor that had the most significant impact on ligand binding. What is more, several important residues were found to significantly affect the binding affinity. Finally, based on our analyses above, a proposed series of molecules were designed.  相似文献   

14.
The conformational dynamics of human serum albumin (HSA) was investigated by principal component analysis (PCA) applied to three molecular dynamics trajectories of 200 ns each. The overlap of the essential subspaces spanned by the first 10 principal components (PC) of different trajectories was about 0.3 showing that the PCA based on a trajectory length of 200 ns is not completely convergent for this protein. The contributions of the relative motion of subdomains and of the subdomains (internal) distortion to the first 10 PCs were found to be comparable. Based on the distribution of the first 3 PC, 10 protein conformers are identified showing relative root mean square deviations (RMSD) between 2.3 and 4.6 Å. The main PCs are found to be delocalized over the whole protein structure indicating that the motions of different protein subdomains are coupled. This coupling is considered as being related to the allosteric effects observed upon ligand binding to HSA. On the other hand, the first PC of one of the three trajectories describes a conformational transition of the protein domain I that is close to that experimentally observed upon myristate binding. This is a theoretical support for the older hypothesis stating that changes of the protein onformation favorable to binding can precede the ligand complexation. A detailed all atoms PCA performed on the primary Sites 1 and 2 confirms the multiconformational character of the HSA binding sites as well as the significant coupling of their motions. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 561–572, 2014.  相似文献   

15.
Molecular dynamics (MD) simulations coupled with principal component (PC) analysis were carried out to study functional roles of Mg2+ binding to extracellular signal-regulated kinase 2 (ERK2). The results suggest that Mg2+ binding heavily decreases eigenvalue of the first principal component and totally inhibits motion strength of ERK2, which favors stabilization of ERK2 structure. Binding free energy predictions indicate that Mg2+ binding produces an important effect on binding ability of adenosine triphosphate (ATP) to ERK2 and strengthens the ATP binding. The calculations of residue-based free energy decomposition show that lack of Mg2+ weakens interactions between the hydrophobic rings of ATP and five residues I29, V37, A50, L105, and L154. Hydrogen bond analyses also prove that Mg2+ binding increases occupancies of hydrogen bonds formed between ATP and residues K52, Q103, D104, and M106. We expect that this study can provide a significant theoretical hint for designs of anticancer drugs targeting ERK2.  相似文献   

16.
In this research, for the first time, molecular dynamics (MD) method was used to simulate aspirin and ibuprofen at various concentrations and in neutral and charged states. Effects of the concentration (dosage), charge state, and existence of an integral protein in the membrane on the diffusion rate of drug molecules into lipid bilayer membrane were investigated on 11 systems, for which the parameters indicating diffusion rate and those affecting the rate were evaluated. Considering the diffusion rate, a suitable score was assigned to each system, based on which, analysis of variance (ANOVA) was performed. By calculating the effect size of the indicative parameters and total scores, an optimum system with the highest diffusion rate was determined. Consequently, diffusion rate controlling parameters were obtained: the drug–water hydrogen bond in protein-free systems and protein–drug hydrogen bond in the systems containing protein.  相似文献   

17.
18.
19.
The attachment of SARA-CoV-2 happens between ACE2 and the receptor binding domain (RBD) on the spike protein. Mutations in this domain can affect the binding affinity of the spike protein for ACE2. S477N, one of the most common mutations reported in the recent variants, is located in the RBD. Today's computational approaches in biology, especially during the SARS-CoV-2 pandemic, assist researchers in predicting a protein's behavior in contact with other proteins in more detail. In this study, we investigated the interactions of the S477N-hACE2 in silico to find the impact of this mutation on its binding affinity for ACE2 and immunity responses using dynamics simulation, protein–protein docking, and immunoinformatics methods. Our computational analysis revealed an increased binding affinity of N477 for ACE2. Four new hydrogen and hydrophobic bonds in the mutant RBD-ACE2 were formed (with S19 and Q24 of ACE2), which do not exist in the wild type. Also, the protein spike structure in this mutation was associated with an increase in stabilization and a decrease in its fluctuations at the atomic level. N477 mutation can be considered as the cause of increased escape from the immune system through MHC-II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号